Skip to main content
Log in

Sonication-Free Exfoliation of Graphite Oxide via Rapid Phase Change of Water

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Efficacy of a new approach for the synthesis of graphene oxide (GO) nanosheets that has been recently reported (Ogino et al. in Chem Mater 26:3334–3339, 2014) was investigated further using graphite oxides with various degrees of oxidation and average particle sizes. The approach consists of rapid freeze–thaw cycles of water containing graphite oxide, which enables the efficient exfoliation of graphite oxide layers with the minimal fragmentation of GO sheets. The method is effective for the exfoliation of graphite oxides with C/O atomic ratios ≤2.6 as shown by experiments with various degrees of oxidation of graphite oxides. When this method was tested for large particle-size graphite oxide that had been prepared from graphite with the average particle size of 60 μm, it formed approximately tenfold larger GO sheets than those prepared using sonication. Exfoliation experiments conducted at different freezing rates of water demonstrate that a faster freezing rate of water yielded a higher concentration of a dispersed GO solution. Thus, the results support the hypothesis that rapid phase change enables efficient layer exfoliation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tsapatsis M (2014) AIChE J 60(7):2374–2381

    Article  CAS  Google Scholar 

  2. Díaz U, Corma A (2014) Dalton Trans 43(27):10292–10316

    Article  Google Scholar 

  3. Roth WJ, Nachtigall P, Morris RE, Čejka J (2014) Chem Rev 114(9):4807–4837

    Article  CAS  Google Scholar 

  4. Takagaki A, Sugisawa M, Lu D, Kondo JN, Hara M, Domen K, Hayashi S (2003) J Am Chem Soc 125(18):5479–5485

    Article  CAS  Google Scholar 

  5. Li L, Ma R, Ebina Y, Iyi N, Sasaki T (2005) Chem Mater 17(17):4386–4391

    Article  CAS  Google Scholar 

  6. Wang Q, O’Hare D (2012) Chem Rev 112(7):4124–4155

    Article  CAS  Google Scholar 

  7. Ogino I, Nigra MM, Hwang S-J, Ha J-M, Rea T, Zones SI, Katz A (2011) J Am Chem Soc 133(10):3288–3291

    Article  CAS  Google Scholar 

  8. Ouyang X, Hwang S-J, Runnebaum RC, Xie D, Wanglee Y-J, Rea T, Zones SI, Katz A (2014) J Am Chem Soc 136(4):1449–1461

    Article  CAS  Google Scholar 

  9. Ogino I, Chen CY, Gates BC (2010) Dalton Trans 39(36):8423–8431

    Article  CAS  Google Scholar 

  10. Lambert S, Job N, Dsouza L, Pereira M, Pirard R, Heinrichs B, Figueiredo J, Pirard J, Regalbuto J (2009) J Catal 261(1):23–33

    Article  CAS  Google Scholar 

  11. Maheshwari S, Jordan E, Kumar S, Bates FS, Penn RL, Shantz DF, Tsapatsis M (2008) J Am Chem Soc 130(4):1507–1516

    Article  CAS  Google Scholar 

  12. Eilertsen EA, Ogino I, Hwang SJ, Rea T, Yeh S, Zones SI, Katz A (2011) Chem Mater 23(24):5404–5408

    Article  CAS  Google Scholar 

  13. Ogino I, Eilertsen EA, Hwang S-J, Rea T, Xie D, Ouyang X, Zones SI, Katz A (2013) Chem Mater 25(9):1502–1509

    Article  CAS  Google Scholar 

  14. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN (2014) Nat Mater 13:624–630

    Article  CAS  Google Scholar 

  15. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nano 3(2):101–105

    Article  CAS  Google Scholar 

  16. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Langmuir 24(19):10560–10564

    Article  CAS  Google Scholar 

  17. Su C, Loh KP (2012) Acc Chem Res 46(10):2275–2285

    Article  Google Scholar 

  18. Haag D, Kung H (2014) Top Catal 57(6–9):762–773

    Article  CAS  Google Scholar 

  19. Kamat PV (2009) J Phys Chem Lett 1(2):520–527

    Article  Google Scholar 

  20. Seger B, Kamat PV (2009) J Phys Chem C 113(19):7990–7995

    Article  CAS  Google Scholar 

  21. Li Y, Gao W, Ci L, Wang C, Ajayan PM (2010) Carbon 48(4):1124–1130

    Article  CAS  Google Scholar 

  22. Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn HJ, Bao Y, Yu M (2013) Science 342(6154):95–98

    Article  CAS  Google Scholar 

  23. Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR (2014) Science 343(6172):752–754

    Article  CAS  Google Scholar 

  24. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  25. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brinson LC (2008) Nat Nanotechnol 3(6):327–331

    Article  CAS  Google Scholar 

  26. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448(7152):457–460

    Article  CAS  Google Scholar 

  27. Yang X, Cheng C, Wang Y, Qiu L, Li D (2013) Science 341(6145):534–537

    Article  CAS  Google Scholar 

  28. Lei Z, Mitsui T, Nakafuji H, Itagaki M, Sugimoto W (2014) J Phys Chem C 118(13):6624–6630

    Article  CAS  Google Scholar 

  29. Park S, Ruoff RS (2009) Nat Nano 4(4):217–224

    Article  CAS  Google Scholar 

  30. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  31. Feng H, Cheng R, Zhao X, Duan X, Li J (2013) Nat Commun 4:1539

    Article  Google Scholar 

  32. Chua CK, Pumera M (2014) Chem Soc Rev 43(1):291–312

    Article  CAS  Google Scholar 

  33. Qiu L, Liu JZ, Chang SL, Wu Y, Li D (2012) Nat Commun 3:1241

    Article  Google Scholar 

  34. Hummers WS, Offeman RE (1958) J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  35. Galande C, Gao W, Mathkar A, Dattelbaum AM, Narayanan TN, Mohite AD, Ajayan PM (2014) Part Part Syst Charact 31(6):619–638

    Article  CAS  Google Scholar 

  36. Wang X, Bai H, Shi G (2011) J Am Chem Soc 133(16):6338–6342

    Article  CAS  Google Scholar 

  37. Karim MR, Hatakeyama K, Matsui T, Takehira H, Taniguchi T, Koinuma M, Matsumoto Y, Akutagawa T, Nakamura T, Noro S-I, Yamada T, Kitagawa H, Hayami S (2013) J Am Chem Soc 135(22):8097–8100

    Article  CAS  Google Scholar 

  38. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) Carbon 53:38–49

    Article  CAS  Google Scholar 

  39. Guittonneau F, Abdelouas A, Grambow B, Huclier S (2010) Ultrason Sonochem 17(2):391–398

    Article  CAS  Google Scholar 

  40. Pan S, Aksay IA (2011) ACS Nano 5(5):4073–4083

    Article  CAS  Google Scholar 

  41. Ogino I, Yokoyama Y, Iwamura S, Mukai SR (2014) Chem Mater 26(10):3334–3339

    Article  CAS  Google Scholar 

  42. Talyzin AV, Luzan SM, Szabó T, Chernyshev D, Dmitriev V (2011) Carbon 49(6):1894–1899

    Article  CAS  Google Scholar 

  43. Mukai SR, Nishihara H, Tamon H (2004) Chem Commun 7:874–875

    Article  Google Scholar 

  44. Ogino I, Kazuki S, Mukai SR (2014) J Phys Chem C 118(13):6866–6872

    Article  CAS  Google Scholar 

  45. Tuinstra F, Koenig JL (1970) J Chem Phys 53(3):1126

    Article  CAS  Google Scholar 

  46. Ferrari AC, Robertson J (2000) Phys Rev B 61(20):14095–14107

    Article  CAS  Google Scholar 

  47. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97(18):187401

    Article  CAS  Google Scholar 

  48. Cancado LG, Jorio A, Ferreira EH, Stavale F, Achete CA, Capaz RB, Moutinho MV, Lombardo A, Kulmala TS, Ferrari AC (2011) Nano Lett 11(8):3190–3196

    Article  CAS  Google Scholar 

  49. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39(1):228–240

    Article  CAS  Google Scholar 

  50. Dimiev AM, Tour JM (2014) ACS Nano 8(3):3060–3068

    Article  CAS  Google Scholar 

  51. Acik M, Lee G, Mattevi C, Pirkle A, Wallace RM, Chhowalla M, Cho K, Chabal Y (2011) J Phys Chem C 115(40):19761–19781

    Article  CAS  Google Scholar 

  52. Perrozzi F, Croce S, Treossi E, Palermo V, Santucci S, Fioravanti G, Ottaviano L (2014) Carbon 77:473–480

    Article  CAS  Google Scholar 

  53. Mustafa L, Aliaksandra R, John FD, Jonathan NC (2013) Nanotechnology 24(26):265703

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Mr. Junichi Nishimura and Mr. Kohei Kitano for their help in the measurements of Raman spectra. This research was supported by JSPS KAKENHI Grant Numbers 24656478 and 60625581.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Ogino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1818 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogino, I., Yokoyama, Y. & Mukai, S.R. Sonication-Free Exfoliation of Graphite Oxide via Rapid Phase Change of Water. Top Catal 58, 522–528 (2015). https://doi.org/10.1007/s11244-015-0391-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0391-z

Keywords

Navigation