Skip to main content
Log in

High-Performance Catalysts with MSE-Type Zeolite Framework

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Advances on the preparation routes to MSE-type zeolites, microporous silicates with a 12-10-10-ring micropore system, are reviewed and some examples of the catalytic application are presented. MCM-68 as the most typical aluminosilicate material with the MSE framework synthesized by using a rigid and bulky diquaternary ammonium cation as the organic structure-directing agent exhibited excellent catalytic performance for hexane cracking and dimethyl ether-to-olefin reactions when it was post-synthetically dealuminated with nitric acid. Variation of the synthetic route provided characteristic aluminosilicate MSE-type materials with the improved catalytic performances for hexane cracking. Dealuminated MCM-68 was efficiently converted to titanosilicate [Ti]-MCM-68, which exhibited high catalytic performance in epoxidation and phenol oxidation. In addition, the pure-silica version of MSE framework, YNU-2, was successfully synthesized by dry-gel conversion method using the same organic cation followed by stabilization via steaming. To the remaining site defects in the stabilized framework of YNU-2, Ti atoms were introduced to give the new microporous titanosilicate [Ti]-YNU-2, which showed very high activity and para-selectivity during phenol oxidation using H2O2 as an oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barrer RM, Denny PJ (1961) J Chem Soc 36:971–982

    Article  Google Scholar 

  2. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th ed. Elsevier, Amsterdam. http://www.iza-structure.org/databases/

  3. Nicholas CP (2010) In: Kulprathipanja S (ed) Zeolites in industrial separation and catalysis. Wiley-VCH, Weinheim, Chapter 12

  4. Calabro DC, Cheng JC, Crane Jr RA, Kresge CT, Dhingra SS, Steckel MA Stern DL, Weston SC (2000) US Patent 6049018

  5. Dorset DL, Weston SC, Dhingra SS (2006) J Phys Chem B 110:2045–2050

    Article  CAS  Google Scholar 

  6. Burton AW (2003) Nat Mater 2:438–440

    Article  CAS  Google Scholar 

  7. Koyama Y, Ikeda T, Tatsumi T, Kubota Y (2008) Angew Chem Int Ed 47:1042–1046

    Article  CAS  Google Scholar 

  8. Ikeda T, Inagaki S, Hanaoka T, Kubota Y (2010) J Phys Chem C 114:19641–19648

    Article  CAS  Google Scholar 

  9. Kubota Y, Helmkamp MM, Zones SI, Davis ME (1996) Micropor Mater 6:213–229

    Article  CAS  Google Scholar 

  10. Burton AW (2013) US 2013/0095030

  11. Strohmaier KG, Weston SC, Vartuli JC, Ippoliti JT (2011) US Patent 8025863

  12. WestonSC, Strohmaier KG, Vroman HB (2013) US 2013/0115163

  13. Moscoso JG, Deng-Yang J (2011) US Patent 8022262

  14. Sun J, Bonneau C, Cantin A, Corma A, Dìaz-Cabañas MJ, Moliner M, Zhang D, Li M, Zou X (2009) Nature 458:1154–1157

    Article  CAS  Google Scholar 

  15. Zones SI (2013) US Patent 8545800

  16. Dhingra SS, Weston SC (2013) US Patent 6656268

  17. Dorset DL, Kennedy GJ (2005) J Phys Chem B 109:13891–13898

    Article  CAS  Google Scholar 

  18. Xie D, McCusker LB, Baerlocher Ch, Gibson L, Burton AW, Hwang S-J (2009) J Phys Chem C 113:9845–9850

    Article  CAS  Google Scholar 

  19. Shibata T, Suzuki S, Kawagoe H, Komura K, Kubota Y, Sugi Y, Kim JH, Seo G (2008) Micropor Mesopor Mater 116:216–226

    Article  CAS  Google Scholar 

  20. Inagaki S, Tsuboi Y, Nishita Y, Syahylah T, Wakihara T, Kubota Y (2013) Chem Eur J 19(2013):7780–7786

    Article  CAS  Google Scholar 

  21. Rao PRHP, Matsukata M (1996) Chem Comm 32:1441–1442

    Article  Google Scholar 

  22. Tatsumi T, Jappar N (1998) J Phys Chem B 102:7126–7131

    Article  CAS  Google Scholar 

  23. Bandyopadhyay R, Kubota Y, Sugimoto N, Fukushima Y (1999) Micropor Mesopor Mater 32:81–91

    Article  CAS  Google Scholar 

  24. Rao PRHP, Ueyama K, Matsukata M (1998) Appl Catal A 166:97–103

    Article  Google Scholar 

  25. Xu W, Dong J, Li J, Li J, Wu F (1990) J Chem Soc Chem Comm 26:755–756

    Article  Google Scholar 

  26. Kim MH, Li HX, Davis ME (1993) Micropor Mater 1:191–200

    Article  CAS  Google Scholar 

  27. Matsukata M, Nishiyama N, Ueyama K (1994) J Chem Soc Chem Comm 30:339–340

    Article  Google Scholar 

  28. Matsukata M, Ogura M, Osaki T, Rao PRHP, Nomura M, Kikuchi E (1999) Top Catal 9:77–92

    Article  CAS  Google Scholar 

  29. Matsukata M, Ogura M, Osaki T, Kikuchi E, Mitra A (2001) Micropor Mesopor Mater 48:23–29

    Article  CAS  Google Scholar 

  30. Subotić B, Škrtić D, Šmit D, Sekovanić L (1980) J Cryst Growth 50:498–508

    Article  Google Scholar 

  31. Subotić B, Sekovanić L (1986) J Cryst Growth 75:561–572

    Article  Google Scholar 

  32. Subotić B, Šmit I, Madžija O, Sekovanić L (1982) Zeolites 2:135–142

    Article  Google Scholar 

  33. Zones SI (1991) J Chem Soc Faraday Trans 87:3709–3716

    Article  CAS  Google Scholar 

  34. Zones SI, Yuen LT, Nakagawa Y, van Nordstrand RA, Toto SD (1993) Proceedings of the 9th international zeolite conference, vol 1, pp 163–170

  35. Zones SI, Nakagawa Y (1994) Micropor Mesopor Mater 2:557–562

    Article  Google Scholar 

  36. Ahedi RK, Kubota Y, Sugi Y (2001) J Mater Chem 11:2922–2924

    Article  CAS  Google Scholar 

  37. Ahedi RK, Kubota Y, Pusparatu, Sugi Y (2003) Bull Chem Soc Jpn 76:883–890

    Article  CAS  Google Scholar 

  38. Maekawa H, Kubota Y, Sugi Y (2004) Chem Lett 33:1126–1127

    Article  CAS  Google Scholar 

  39. Kubota Y, Maekawa H, Miyata S, Tatsumi T, Sugi Y (2007) Micropor Mesopor Mater 101:115–126

    Article  CAS  Google Scholar 

  40. Jon H, Nakahata K, Lu B, Oumi Y, Sano T (2006) Micropor Mesopor Mater 96:72–78

    Article  CAS  Google Scholar 

  41. Jon H, Ikawa N, Oumi Y, Sano T (2008) Chem Mater 20:4135–4141

    Article  CAS  Google Scholar 

  42. Honda K, Yashiki A, Itakura M, Ide Y, Sadakane M, Sano T (2011) Micropor Mesopor Mater 142:161–167

    Article  CAS  Google Scholar 

  43. Itakura M, Ota K, Shibata S, Inoue T, Ide Y, Sadakane M, Sano T (2011) J Cryst Growth 314:274–278

    Article  CAS  Google Scholar 

  44. Jon H, Takahashi S, Sasaki H, Oumi Y, Sano T (2008) Micropor Mesopor Mater 113:56–63

    Article  CAS  Google Scholar 

  45. Itakura M, Inoue T, Takahashi A, Fujitani T, Oumi Y, Sano T (2008) Chem Lett 39:908–909

    Article  Google Scholar 

  46. Itakura M, Goto I, Takahashi A, Fujitani T, Ide Y, Sadakane M, Sano T (2011) Micropor Mesopor Mater 144:91–96

    Article  CAS  Google Scholar 

  47. Yamanaka N, Itakura M, Kiyozumi Y, Ide Y, Sadakane M, Sano T (2012) Micropor Mesopor Mater 158:141–147

    Article  CAS  Google Scholar 

  48. Inoue T, Itakura M, Jon H, Takahashi A, Fujitani T, Oumi Y, Sano T (2009) Micropor Mesopor Mater 122:149–154

    Article  CAS  Google Scholar 

  49. Yashiki A, Honda K, Fujimoto A, Shibata S, Ide Y, Sadakane M, Sano T (2011) J Cryst Growth 325:96–100

    Article  CAS  Google Scholar 

  50. Shibata S, Itakura M, Ide Y, Sadakane M, Sano T (2011) Micropor Mesopor Mater 138:32–39

    Article  CAS  Google Scholar 

  51. Sasaki H, Jon H, Itakura M, Inoue T, Ikeda T, Oumi Y, Sano T (2009) J Porous Mater 16:465–471

    Article  CAS  Google Scholar 

  52. Itakura M, Oumi Y, Sadakane M, Sano T (2010) Mater Res Bull 45:646–650

    Article  CAS  Google Scholar 

  53. Goto I, Itakura M, Shibata S, Honda K, Ide Y, Sadakane M, Sano T (2012) Micropor Mesopor Mater 158:117–122

    Article  CAS  Google Scholar 

  54. Johnson ID, Vroman HB, Weston CC, Stevens LM (2013) US Patent 8562941

  55. Itabashi K, Kamimura Y, Iyoki K, Shimojima A, Okubo T (2012) J Am Chem Soc 134:11542–11549

    Article  CAS  Google Scholar 

  56. Iyoki K, Kamimura Y, Itabashi K, Shimojima A, Okubo T (2010) Chem Lett 39:730–731

    Article  CAS  Google Scholar 

  57. Kubota Y, Itabashi K, Inagaki S, Nishita Y, Komatsu R, Tsuboi Y, Shinoda S, Okubo T (2014) Chem Mater 26:1250–1259

    Article  CAS  Google Scholar 

  58. Žilková N, Bejblová M, Gil B, Zones SI, Burton AW, Chen C-Y, Musilová-Pavlačková M, Košová G, Čejka J (2009) J Catal 266:79–91

    Article  Google Scholar 

  59. Gil B, Košová G, Čejka J (2010) Micropor Mesopor Mater 129:256–266

    Article  CAS  Google Scholar 

  60. Shibata T, Kawagoe H, Naiki H, Komura K, Kubota Y, Sugi Y (2009) J Mol Catal A 297:80–85

    Article  CAS  Google Scholar 

  61. Ernst S, Elangovan SP, Gerstner M, Hartmann M, Sauerbeck S (2004) Abstr 14th Int Zeol Conf 982

  62. Ernst S, Elangovan SP, Gerstner M, Hartmann M, Hecht T, Sauerbeck S (2004) Stud Surf Sci Catal 154C:2861–2868

    Article  CAS  Google Scholar 

  63. Inagaki S, Takechi K, Kubota Y (2010) Chem Comm 46:2662–2664

    Article  CAS  Google Scholar 

  64. Kubota Y, Inagaki S, Takechi K (2014) Catal Today 226:109–116

    Article  CAS  Google Scholar 

  65. Kubota Y, Inagaki S, Nishita Y, Itabashi K, Tsuboi Y, Syahylar T, Okubo T (2015) Catal Today 243:85–91

    Article  CAS  Google Scholar 

  66. Elangovan SP, Ogura M, Ernst S, Hartmann M, Tontisirin S, Davis ME, Okubo T (2006) Micropor Mesopor Mater 26:210–215

    Article  Google Scholar 

  67. Li J, Xu C, Lou L-L, Zhang C, Yu K, Qi B, Liu S, Wang Y (2013) Catal Comm 38:59–62

    Article  CAS  Google Scholar 

  68. Park S, Watanabe Y, Nishita Y, Fukuoka T, Inagaki S, Kubota Y (2014) J Catal 319:265–273

    Article  CAS  Google Scholar 

  69. Kubota Y, Koyama Y, Yamada Y, Inagaki S, Tatsumi T (2008) Chem Comm 46:6224–6226

    Article  Google Scholar 

  70. Wu P, Kubota Y, Yokoi T (2014) ACS Catal 4:23–30

    Article  CAS  Google Scholar 

  71. Wu P, Nuntasri D, Ruan J, Liu Y, He M, Fan W, Terasaki O, Tatsumi T (2004) J Phys Chem B 108:19126–19131

    Article  CAS  Google Scholar 

  72. Wu P, Tatsumi T (2002) J Phys Chem B 106:748–753

    Article  CAS  Google Scholar 

  73. Sasaki M, Sato Y, Tsuboi Y, Inagaki S (2014) KubotaY. ACS Catal 4:2653–2657

    Article  CAS  Google Scholar 

  74. Zecchina A, Bordiga S, Lamberti C, Ricchiardi G, Lamberti C, Ricchiardi G, Scarano D, Petrini G, Leofanti G, Mantegazza M (1996) Catal Today 32:97–106

    Article  CAS  Google Scholar 

  75. Ratnasamy P, Srinivas D, Knoezinger H (2004) Adv Catal 48:1–169

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported in part by Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP, AS231Z03507C) from Japan Science and Technology Agency (JST), by the New Energy and Industrial Technology Development Organization (NEDO), and by Grant-in-Aid for Scientific Research (Nos. 13199071 and 23760741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kubota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, Y., Inagaki, S. High-Performance Catalysts with MSE-Type Zeolite Framework. Top Catal 58, 480–493 (2015). https://doi.org/10.1007/s11244-015-0389-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0389-6

Keywords

Navigation