Skip to main content
Log in

The Dynamic Nature of Brønsted Acid Sites in Cu–Zeolites During NOx Selective Catalytic Reduction: Quantification by Gas-Phase Ammonia Titration

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Brønsted acid sites on Cu-exchanged zeolites can be titrated selectively using gaseous ammonia when NH3 saturation steps are followed by protocols that remove Lewis acid-bound and physisorbed NH3, such as purging in flowing wet helium at 433 K. NH3 titrates all H+ sites on small-pore chabazite zeolites (SSZ-13) and leads to the complete disappearance of infrared stretches for Brønsted acidic OH groups after saturation (433 K), in contrast with larger n-propylamine titrants that access only a small fraction (<0.25) of H+ sites on SSZ-13 under conditions sufficient to titrate all H+ sites on medium-pore ZSM-5 zeolites (323 K, 2 h). NH3 titration of the residual H+ sites present in Cu-exchanged SSZ-13 samples (Si/Al = 4.5, Cu/Al = 0–0.20) after oxidative treatments detects two fewer H+ sites per exchanged Cu2+ ion, as expected to maintain framework charge neutrality. NH3 titrants detect only one fewer H+ site (per Cu) after Cu-SSZ-13 samples undergo a reductive treatment in flowing NO and NH3 (473 K), however, indicating that each Cu2+ cation reduces to form a Cu+ and H+ site pair. In the context of low temperature (473 K) selective catalytic reduction (SCR) on high aluminum Cu-SSZ-13, we discuss the different mechanistic roles of residual H+ sites that remain after Cu2+ exchange, whose primary function appears to be NH3 storage, and of proximal H+ sites that are generated in situ upon Cu2+ reduction, whose role is to stabilize reactive NH4 + intermediates involved in the standard SCR oxidation half-cycle. We highlight how gaseous NH3 titrants can selectively count H+ sites on small-pore, Cu-exchanged zeolites and, in doing so, enable probing the dynamic nature of active sites and catalytic surfaces during SCR redox cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davis ME, Lobo RF (1992) Chem Mater 4:756–768

    Article  CAS  Google Scholar 

  2. Davis ME (2002) Nature 417:813–821

    Article  CAS  Google Scholar 

  3. Rossin JA, Saldarriaga C, Davis ME (1987) Zeolites 7:295–300

    Article  CAS  Google Scholar 

  4. Montes C, Davis ME, Murray B, Narayana M (1990) J Phys Chem 94:6425–6430

    Article  CAS  Google Scholar 

  5. Davis ME (1991) Ind Eng Chem Res 30:1675–1683

    Article  CAS  Google Scholar 

  6. Korhonen ST, Fickel DW, Lobo RF, Weckhuysen BM, Beale AM (2011) Chem Commun 47:800–802

    Article  CAS  Google Scholar 

  7. Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, Weckhuysen BM, Beale AM (2012) J Phys Chem C 116:4809–4818

    Article  CAS  Google Scholar 

  8. Paolucci C, Verma AA, Bates SA, Kispersky VF, Miller JT, Gounder R, Delgass WN, Ribeiro FH, Schneider WF (2014) Angew Chem Int Ed 53:11828–11833

    Article  CAS  Google Scholar 

  9. McEwen JS, Anggara T, Schneider WF, Kispersky VF, Miller JT, Delgass WN, Ribeiro FH (2012) Catal Today 184:129–144

    Article  CAS  Google Scholar 

  10. Kispersky VF, Kropf AJ, Ribeiro FH, Miller JT (2012) Phys Chem Chem Phys 14:2229–2238

    Article  CAS  Google Scholar 

  11. Andersen PJ, Bailie JE, Casci JL, Chen HY, Fedeyko JM, Foo RKS, Rajaram RR (2010) US Patent US20100290963 A1

  12. Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187–190

    Article  CAS  Google Scholar 

  13. Bull I, Koermer GS, Moini A, Unverricht S (2009) US Patent US20090196812 A1

  14. Deka U, Lezcano-Gonzalez I, Weckhuysen BM, Beale AM (2013) ACS Catal 3:413–427

    Article  CAS  Google Scholar 

  15. Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) Catal Rev 50:492–531

    Article  CAS  Google Scholar 

  16. Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) J Catal 287:203–209

    Article  CAS  Google Scholar 

  17. Bates SA, Verma AA, Paolucci C, Parekh AA, Anggara T, Yezerets A, Schneider WF, Miller JT, Delgass WN, Ribeiro FH (2014) J Catal 312:87–97

    Article  CAS  Google Scholar 

  18. Sjövall H, Olsson L, Fridell E, Blint RJ (2006) Appl Catal B 64:180–188

    Article  Google Scholar 

  19. Choi E-Y, Nam I-S, Kim YG (1996) J Catal 161:597–604

    Article  CAS  Google Scholar 

  20. Huang HY, Long RQ, Yang RT (2002) Appl Catal A 235:241–251

    Article  CAS  Google Scholar 

  21. Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL (2005) Catal Today 100:217–222

    Article  CAS  Google Scholar 

  22. Metkar PS, Salazar N, Muncrief R, Balakotaiah V, Harold MP (2011) Appl Catal B 104:110–126

    Article  CAS  Google Scholar 

  23. Long RQ, Yang RT (1999) J Catal 188:332–339

    Article  CAS  Google Scholar 

  24. Kustov AL, Hansen TW, Kustova M, Christensen CH (2007) Appl Catal B 76:311–319

    Article  CAS  Google Scholar 

  25. Dumesic JA, Topsøe NY, Topsøe H, Chen Y, Slabiak T (1996) J Catal 163:409–417

    Article  CAS  Google Scholar 

  26. Schneider H, Tschudin S, Schneider M, Wokaun A, Baiker A (1994) J Catal 147:5–14

    Article  CAS  Google Scholar 

  27. Bates SA, Delgass WN, Ribeiro FH, Miller JT, Gounder R (2014) J Catal 312:26–36

    Article  CAS  Google Scholar 

  28. Brandenberger S, Kröcher O, Wokaun A, Tissler A, Althoff R (2009) J Catal 268:297–306

    Article  CAS  Google Scholar 

  29. Gao F, Kwak J, Szanyi J, Peden CF (2013) Top Catal 56:1441–1459

    Article  CAS  Google Scholar 

  30. Woolery GL, Kuehl GH, Timken HC, Chester AW, Vartuli JC (1997) Zeolites 19:288–296

    Article  CAS  Google Scholar 

  31. Bagnasco G (1996) J Catal 159:249–252

    Article  Google Scholar 

  32. Topsøe NY, Dumesic JA, Topsoe H (1995) J Catal 151:241–252

    Article  Google Scholar 

  33. Topsøe NY, Topsøe H, Dumesic JA (1995) J Catal 151:226–240

    Article  Google Scholar 

  34. Zones SI (1985) US Patent US4544538 A

  35. Gorte RJ (1999) Catal Lett 62:1–13

    Article  CAS  Google Scholar 

  36. Wang J, Yu T, Wang X, Qi G, Xue J, Shen M, Li W (2012) Appl Catal B 127:137–147

    Article  CAS  Google Scholar 

  37. Datka J, Gil B, Kubacka A (1995) Zeolites 15:501–506

    Article  CAS  Google Scholar 

  38. Katada N, Niwa M (2004) Catal Surv Asia 8:161–170

    Article  CAS  Google Scholar 

  39. Farneth WE, Gorte RJ (1995) Chem Rev 95:615–635

    Article  CAS  Google Scholar 

  40. Kresnawahjuesa O, Gorte RJ, Oliveira Dd, Lau LY (2002) Catal Lett. 82:155–160

    Article  CAS  Google Scholar 

  41. Kresnawahjuesa O, Heussner R, Lee C-C, Kuehl G, Gorte RJ (2000) Appl Catal A 199:53–60

    Article  CAS  Google Scholar 

  42. Parrillo DJ, Adamo AT, Kokotailo GT, Gorte RJ (1990) Appl. Catal. 67:107–118

    Article  CAS  Google Scholar 

  43. Gounder R, Jones AJ, Carr RT, Iglesia E (2012) J Catal 286:214–223

    Article  CAS  Google Scholar 

  44. Baiglow AI, Parrillo DJ, Kokotailo GT, Gorte RJ (1994) J Catal 148:213–223

    Article  Google Scholar 

  45. Xu B, Rotunno F, Bordiga S, Prins R, van Bokhoven JA (2006) J Catal 241:66–73

    Article  CAS  Google Scholar 

  46. Omegna A, Prins R, van Bokhoven JA (2005) J. Phys. Chem. B 109:9280–9283

    Article  CAS  Google Scholar 

  47. Omegna A, van Bokhoven JA, Prins R (2003) J. Phys. Chem. B 107:8854–8860

    Article  CAS  Google Scholar 

  48. van Bokhoven JA, Roest AL, Koningsberger DC, Miller JT, Nachtegaal GH, Kentgens APM (2000) J. Phys. Chem. B 104:6743–6754

    Article  Google Scholar 

  49. Hunger M, Engelhardt G, Weitkamp J (1995) Microporous Mater 3:497–510

    Article  CAS  Google Scholar 

  50. Zhao Z, Xu S, Hu MY, Bao X, Peden CHF, Hu J (2014) J Phys Chem C. doi:10.1021/jp509982r

    Google Scholar 

  51. Dent LS, Smith JV (1958) Nature 181:1794–1796

    Article  CAS  Google Scholar 

  52. Olson DH, Kokotailo GT, Lawton SL, Meier WM (1981) J Phys Chem 85:2238–2243

    Article  CAS  Google Scholar 

  53. Pope CG (1990) Zeolites 10:28–31

    Article  CAS  Google Scholar 

  54. Verma AA, Bates SA, Anggara T, Paolucci C, Parekh AA, Kamasamudram K, Yezerets A, Miller JT, Delgass WN, Schneider WF, Ribeiro FH (2014) J Catal 312:179–190

    Article  CAS  Google Scholar 

  55. Doronkin DE, Casapu M, Günter T, Müller O, Frahm R, Grunwaldt J-D (2014) J Phys Chem C 118:10204–10212

    Article  CAS  Google Scholar 

  56. Moden B, Donohue J, Cormier W, Li H-X (2010) Top Catal 53:1367–1373

    Article  CAS  Google Scholar 

  57. Mihai O, Widyastuti CR, Andonova S, Kamasamudram K, Li J, Joshi SY, Currier NW, Yezerets A, Olsson L (2014) J Catal 311:170–181

    Article  CAS  Google Scholar 

  58. Kamasamudram K, Currier NW, Chen X, Yezerets A (2010) Catal Today 151:212–222

    Article  CAS  Google Scholar 

  59. Auvray X, Partridge WP, Choi J-S, Pihl JA, Yezerets A, Kamasamudram K, Currier NW, Olsson L (2012) Appl Catal B 126:144–152

    Article  CAS  Google Scholar 

  60. Topsøe NY (1994) Science 265:1217–1219

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support provided by the National Science Foundation GOALI program under award number 1258715-CBET. RG also acknowledges financial support from a Ralph E. Powe Junior Faculty Enhancement Award from the Oak Ridge Associated Universities, and from a Purdue Research Foundation Summer Faculty Grant. Support for JTM was provided under the auspices of the U.S. DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract number DE-AC0-06CH11357. We would like to thank Sachem, Inc. for their donation of the structure-directing agent used to synthesize SSZ-13, Dr. Yury Zvinevich for assistance constructing a custom-built acid site titration unit, Austin Tackaberry for assistance with SSZ-13 sample preparation, and Arthur Shih and Jonatan Albarracin-Caballero for assistance with some of the NH3 TPD experiments. Finally, we would like to thank Professor Mark E. Davis for continuing to lead by example and inspire his current and former colleagues to pursue creative research problems in catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajamani Gounder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Iorio, J.R., Bates, S.A., Verma, A.A. et al. The Dynamic Nature of Brønsted Acid Sites in Cu–Zeolites During NOx Selective Catalytic Reduction: Quantification by Gas-Phase Ammonia Titration. Top Catal 58, 424–434 (2015). https://doi.org/10.1007/s11244-015-0387-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0387-8

Keywords

Navigation