Skip to main content
Log in

Patterned Grafted Lewis-Acid Sites on Surfaces: Olefin Epoxidation Catalysis Using Tetrameric Ti(IV)–Calix[4]arene Complexes

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Tetrameric Ti(IV)–calix[4]arene complexes were synthesized and characterized as well as grafted on a hydroxylated SiO2 inorganic support as an example of patterned Lewis-acid sites on an inorganic oxide surface. These complexes consist of a novel calixarene organic ligand with varying lengths of tethers to a central aromatic core, and with the calixarene coordinating four titanium(IV)-cations via tetrahedral recognition on the lower rim. Catalysis of these materials was investigated with a probe reaction consisting of the epoxidation 1-octene with tert-butylhydroperoxide as the oxidant, and a comparison of their hydrolytic stability was performed. The oligomeric calix[4]arenes showed similar behavior in catalysis to the monomeric control, with the exception of the material with the shortest tether length, which shows a 1.3-fold higher activity that may be due to a modest cooperativity effect. In hydrolytic leaching tests, the oligomeric complexes showed higher stability compared to the monomeric complex, and this stability appeared to be more thermodynamic rather than kinetic in nature. We hypothesize that encapsulatation of the tetrameric active site within a silica mesopore of the support contributes to this stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khouw CB, Dartt CB, Labinger JA, Davis ME (1994) J Catal 149:195–205

    Article  CAS  Google Scholar 

  2. Dartt CB, Davis ME (1996) Appl Catal A 143:53–73

    Article  CAS  Google Scholar 

  3. Notestein JM, Iglesia E, Katz A (2004) J Am Chem Soc 126:16478–16486

    Article  CAS  Google Scholar 

  4. Notestein JM, Andrini LR, Kalchenko VI, Requejo FG, Katz A, Iglesia E (2007) J Am Chem Soc 129:1122–1131

    Article  CAS  Google Scholar 

  5. Nandi P, Matvieiev YI, Boyko VI, Durkin KA, Kalchenko VI, Katz A (2011) J Catal 284:42–49

    Article  CAS  Google Scholar 

  6. Imamura S, Nakai T, Utani K, Kanai H (1996) J Catal 161:495–497

    Article  CAS  Google Scholar 

  7. Notestein JM, Katz A (2006) Chem Eur J 12:3954–3965

    Article  CAS  Google Scholar 

  8. Sheldon RA (1980) J Mol Catal 7:107–126

    Article  CAS  Google Scholar 

  9. Sheldon RA, Van Doorn JA (1973) J Catal 31:427–437

    Article  CAS  Google Scholar 

  10. Sheldon RA, Van Doorn JA, Schram CWA, De Jong AJ (1973) J Catal 31:438–443

    Article  CAS  Google Scholar 

  11. Oyama ST (2008) In: Oyama ST (ed) Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Elsevier, Amsterdam, pp 355–371

    Google Scholar 

  12. Helms B, Fréchet JMJ (2006) Adv Synth Catal 348:1125–1148

    Article  CAS  Google Scholar 

  13. Nielsen LPC, Stevenson CP, Blackmond DG, Jacobsen EN (2004) J Am Chem Soc 126:1360–1362

    Article  CAS  Google Scholar 

  14. Konsler RG, Karl J, Jacobsen EN (1998) J Am Chem Soc 120:10780–10781

    Article  CAS  Google Scholar 

  15. Groenen LC, Ruël BHM, Casnati A, Verboom W, Pochini A, Ungaro R, Reinhoudt DN (1991) Tetrahedron 47:8379–8384

    Article  CAS  Google Scholar 

  16. Shang S, Khasnis DV, Burton JM, Santini CJ, Fan M, Small AC, Lattman M (1994) Organometallics 13:5157–5159

    Article  CAS  Google Scholar 

  17. Cabri W, Candiani I (1995) Acc Chem Res 28:2–7

    Article  CAS  Google Scholar 

  18. Littke AF, Fu GC (2001) J Am Chem Soc 123:6989–7000

    Article  CAS  Google Scholar 

  19. Xu H-J, Zhao Y-Q, Zhou X-F (2011) J Org Chem 76:8036–8041

    Article  CAS  Google Scholar 

  20. Berthiol F, Doucet H, Santelli M (2003) Tetrahedron Lett 44:1221–1225

    Article  CAS  Google Scholar 

  21. Fall Y, Berthiol F, Doucet H, Santelli M (2007) Synthesis 11:1683–1696

    Google Scholar 

  22. Lengkeek NA, Boulos RA, McKinley AJ, Riley TV, Martinac B, Stewart SG (2011) Aust J Chem 64:316–323

    Article  CAS  Google Scholar 

  23. Friedrich A, Radius U (2004) Eur J Inorg Chem 21:4300–4316

    Article  Google Scholar 

  24. Zanotti-Gerosa A, Solari E, Giannini L, Floriani C, Re N, Chiesi-Villa A, Rizzoli C (1998) Inorg Chim Acta 270:298–311

    Article  CAS  Google Scholar 

  25. Crocker M, Herold RHM, Guy Orpen A, Overgaag MTA (1999) Dalton Trans 21:3791–3804

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the LyondellBasell Corporation and the U.S. Department of Energy Basic Energy Sciences (DE-FG02-05ER15696) for financial support, and Dr. Ying-Jen Wanglee for technical contributions to this Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew Solovyov or Alexander Katz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winner, L., Daniloff, G., Nichiporuk, R.V. et al. Patterned Grafted Lewis-Acid Sites on Surfaces: Olefin Epoxidation Catalysis Using Tetrameric Ti(IV)–Calix[4]arene Complexes. Top Catal 58, 441–450 (2015). https://doi.org/10.1007/s11244-015-0385-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0385-x

Keywords

Navigation