Skip to main content
Log in

Effect of Pore and Cage Size on the Formation of Aromatic Intermediates During the Methanol-to-Olefins Reaction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Six eight-membered-ring (8MR), microporous materials are synthesized and evaluated as catalysts for the methanol-to-olefins (MTO) reaction. The molecular sieves SSZ-13, SAPO-34, SAPO-39, MCM-35, ERS-7 and RUB-37 are investigated since they have 8MR access to the crystal interior but have differences in pore structure and cage size. The polymethylbenzene species that are the proposed reaction intermediates of the MTO reaction should only be able to form in materials with intra-molecular sieve void spaces of sufficient size to accommodate them. Thus, it is hypothesized that 8MR materials without adequately large pores or cages will be inactive for the MTO reaction. SSZ-13 and SAPO-34 (both with CHA framework topology) have interconnected 3-dimensional pore-and-cage systems sufficiently large for formation of the proposed reaction intermediates, while the other 8MR materials have intra-molecular sieve void spaces that are too small to allow formation of these species. The molecular sieves are tested as MTO catalysts at 400 °C, and only the molecular sieves with the CHA topology show MTO activity. Post-reaction analysis of the organic content of each solid material is accomplished by HF acid digestion with subsequent 1H NMR analysis of the extracted hydrocarbon products to confirm the presence of aromatics in the 8MR materials with sufficiently large cages (those with CHA topology), and absence with materials that have smaller void spaces. These data provide further support for the necessity of polymethylbenzene species in the hydrocarbon pool for MTO activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Froment GF, Dehertog WJH, Marchi AJ (1992) In: Spivey JJ (ed) Catalysis, vol 9. The Royal Society of Chemistry, Cambridge, pp 1–64

  2. Dai W, Wang X, Wu G, Guan N, Hunger M, Li L (2011) ACS Catal 1:292–299

    Article  CAS  Google Scholar 

  3. Kaiser SW (1985) Using silicoaluminophosphate molecular sieve catalyst. U.S. Patent 4,499,327

  4. Vora B, Chen JQ, Bozzano A, Glover B, Barger P (2009) Catal Today 141:77–83

    Article  CAS  Google Scholar 

  5. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed Engl 51:5810–5831

    Article  CAS  Google Scholar 

  6. Hereijgers BP, Bleken F, Nilsen MH, Svelle S, Lillerud K-P, Bjørgen M, Weckhuysen BM, Olsbye U (2009) J Catal 264:77–87

    Article  CAS  Google Scholar 

  7. Dahl IM, Kolboe S (1993) Catal Lett 20:329–336

    Article  CAS  Google Scholar 

  8. Bjørgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) J Catal 249:195–207

    Article  Google Scholar 

  9. Zhu Q, Kondo JN, Tatsumi T, Inagaki S, Ohnuma R, Kubota Y, Shimodaira Y, Kobayashi H, Domen K (2007) J Phys Chem C 111:5409–5415

    Article  CAS  Google Scholar 

  10. Chen D, Moljord K, Fuglerud T, Holmen A (1999) Microporous Mesoporous Mater 29:191–203

    Article  CAS  Google Scholar 

  11. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6 Revised edn. Elsevier, London

    Google Scholar 

  12. Haw JF, Marcus DM (2005) Top Catal 34:41–48

    Article  CAS  Google Scholar 

  13. Arstad B, Nicholas JB, Haw JF (2004) J Am Chem Soc 126:2991–3001

    Article  CAS  Google Scholar 

  14. Liang J, Li H, Zhao S, Guo W, Wang R, Ying M (1990) Appl Catal 64:31–40

    Article  CAS  Google Scholar 

  15. Vora BV, Marker TL, Barger PT, Nilsen HR, Kvisle S, Fuglerud T (1997) Stud Surf Sci Catal 107:87–98

    Article  CAS  Google Scholar 

  16. Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S (2005) Catal Today 106:103–107

    Article  CAS  Google Scholar 

  17. Zones SI (1985) Zeolite SSZ-13 and its method of preparation. US Patent 4,544,538

  18. Yuen L-T, Zones SI, Harris TV, Gallegos EJ, Auroux A (1994) Microporous Mater 2:105–117

    Article  CAS  Google Scholar 

  19. Zhu QJ, Kondo JN, Ohnuma R, Kubota Y, Yamaguchi M, Tatsumi T (2008) Microporous Mesoporous Mater 112:153–161

    Article  CAS  Google Scholar 

  20. Bhawe Y, Moliner-Marin M, Lunn JD, Liu Y, Malek A, Davis ME (2012) ACS Catal 2:2490–2495

    Article  CAS  Google Scholar 

  21. Schmidt JE, Deimund MA, Davis ME (2014) Chem Mater 26:7099–7105

    Article  CAS  Google Scholar 

  22. Baerlocher C, McCusker LB. Database of zeolite structures. http://www.iza-structure.org/databases/. Accessed 3 Dec 2014

  23. Robson H (2001) Verified synthesis of zeolitic materials. Elsevier, Amsterdam

    Google Scholar 

  24. Miller SJ, Process for olefin isomerization. US Patent 6,281,404

  25. Rubin MK (1991) Synthetic crystal MCM-35. US Patent 4,981,663

  26. Campbell BJ, Cheetham AK, Bellussi G, Carluccio L, Perego G, Millini R, Cox DE (1998) Chem Commun 008:1725–1726

    Article  Google Scholar 

  27. Yilmaz B, Müller U, Feyen M, Zhang H, Xiao F-S, De Baerdemaeker T, Tijsebaert B, Jacobs P, De Vos D, Zhang W et al (2012) Chem Commun (Camb) 48:11549–11551

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Chevron Energy and Technology Company and the Dow Chemical Company for each providing partial support for this work. J.E.S. would like to thank the NDSEG for their support through a fellowship. We thank Stacey Zones of Chevron Energy and Technology Company for suggesting that we investigate the suite of materials presented here and for supplying the SAPO-39 material.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Davis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deimund, M.A., Schmidt, J.E. & Davis, M.E. Effect of Pore and Cage Size on the Formation of Aromatic Intermediates During the Methanol-to-Olefins Reaction. Top Catal 58, 416–423 (2015). https://doi.org/10.1007/s11244-015-0384-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0384-y

Keywords

Navigation