Topics in Catalysis

, Volume 58, Issue 7–9, pp 393–404 | Cite as

The Effect of Adsorbed Molecule Gas-Phase Deprotonation Enthalpy on Ion Exchange in Sodium Exchanged Zeolites: An In Situ FTIR Investigation

  • Brian Murphy
  • Mark E. Davis
  • Bingjun XuEmail author


Molecular-level understanding of the interactions between reactants and the surface of solid catalysts is of importance to the rational design of catalysts. Here, in situ transmission Fourier transform infrared spectroscopy is employed to investigate the ion exchange between the acidic hydrogen in organic molecules that have been adsorbed from the gas phase and sodium cations in zeolites. Organic compounds with functional groups common among key biomass-derived compounds are used as probe molecules. We demonstrate that ion exchange between acidic hydrogen in organic molecules and the sodium cations in zeolites with the FAU topology produces Brønsted acid sites and the corresponding adsorbed salt species by identifying signature spectroscopic bands. Furthermore, the gas-phase deprotonation enthalpy (GPDE) of the organic compounds is identified as a key descriptor in determining the feasibility and extent of the exchange process. Molecules with GPDE below 1462 kJ/mol, e.g., m-cresol (1462 kJ/mol), propanoic acid (1454), acetic acid (1457), acrylic acid (1440) and trifluoroacetic acid (1357), show clear vibrational bands for Brønsted acid sites and the corresponding sodium salts, while molecules with higher GPDE, such as trifluoroethanol (1513), ethanol (1586), and water (1622) do not. These data indicate that the degree of dissociation of the acidic hydrogen is a key element in the ion exchange. The generality of this process in zeolites is established by the observation of similar results on zeolites with differing topologies (FAU, MFI, *BEA, and MOR).


Vibrational spectroscopy Ion-exchange Gas-phase deprotonation Zeolites 



We acknowledge support from the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001004. BX and MED acknowledge that preliminary results of this work were obtained at Caltech with financial support provided by a donation from Mr. and Mrs. Lewis W. F Amerongen. The authors would also like to acknowledge Dr. Sonjong Hwang at the California Institute of Technology for his assistance in performing the 29Si solid-state NMR measurements.


  1. 1.
    Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Energy Environ Sci 6:1415–1442CrossRefGoogle Scholar
  2. 2.
    Dusselier M, Sels BF (2014) Top Curr Chem 353:85–125CrossRefGoogle Scholar
  3. 3.
    T. Werpy, G. Peterson, P.N.N.L., N.R.E.L., E.E.R.E (2004)Google Scholar
  4. 4.
    Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513CrossRefGoogle Scholar
  5. 5.
    Bruijnincx PCA, Weckhuysen BM (1987) Angew Chem Int Ed 52(2013):11980–11981Google Scholar
  6. 6.
    Stocker M (2005) Microporous Mesoporous Mater 82:257–292CrossRefGoogle Scholar
  7. 7.
    Jacobs PA, Dusselier M, Sels BF (2014) Angew Chem Int Ed 53:8621–8626CrossRefGoogle Scholar
  8. 8.
    Ogura M, Shinomiya SY, Tateno J, Nara Y, Nomura M, Kikuchi E, Matsukata M (2001) Appl Catal A 219:33–43CrossRefGoogle Scholar
  9. 9.
    Sun P, Yu DH, Fu KM, Gu MY, Wang Y, Huang H, Ying HH (2009) Cat Commun 10:1345–1349CrossRefGoogle Scholar
  10. 10.
    Sun P, Yu DH, Tang ZC, Li H, Huang H (2010) Ind Eng Chem Res 49:9082–9087CrossRefGoogle Scholar
  11. 11.
    Yan J, Yu DH, Sun P, Huang H (2011) Chin J Catal 32:405–411CrossRefGoogle Scholar
  12. 12.
    Zhang JF, Zhao YL, Pan M, Feng XZ, Ji WJ, Au CT (2011) ACS Catal 1:32–41CrossRefGoogle Scholar
  13. 13.
    Yan B, Tao LZ, Liang Y, Xu BQ (2014) ChemSusChem 7:1568–1578CrossRefGoogle Scholar
  14. 14.
    Katryniok B, Paul S, Dumeignil F (2010) Green Chem 12:1910–1913CrossRefGoogle Scholar
  15. 15.
    Wu W, Weitz E (2014) Appl Surf Sci 316:405–416CrossRefGoogle Scholar
  16. 16.
    Jentys A, Lercher JA (2001) In: van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (eds) Introduction to zeolite science and practice, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Karge HG, Ziolek M, Laniecki M (1987) Zeolites 7:197–202CrossRefGoogle Scholar
  18. 18.
    Treacy MMJ, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites. Elsevier, New YorkGoogle Scholar
  19. 19.
    Cejka J, van Bekkum H, Corma A, Schüth F (2007) Introduction to zeolite science and practice, 3rd edn. Elsevier, New YorkGoogle Scholar
  20. 20.
    Yang C, Wang J, Xu QH (1997) Microporous Mater 11:261–268CrossRefGoogle Scholar
  21. 21.
    Ward JW (1968) J Catal 11:238–250CrossRefGoogle Scholar
  22. 22.
    Selvam T, Bandarapu B, Mabande GTP, Toufar H, Schwieger W (2003) Microporous Mesoporous Mater 64:41–50CrossRefGoogle Scholar
  23. 23.
    Camblor MA, Corma A, Valencia S (1998) Microporous Mesoporous Mater 25:59–74CrossRefGoogle Scholar
  24. 24.
    Emeis CA (1993) J Catal 141:347–354CrossRefGoogle Scholar
  25. 25.
    Weltner W (1955) J Am Chem Soc 77:3941–3950CrossRefGoogle Scholar
  26. 26.
    Phung TK, Carnasciali MM, Finocchio E, Busca G (2014) Appl Catal A 470:72–80CrossRefGoogle Scholar
  27. 27.
    Tam MS, Gunter GC, Craciun R, Miller DJ, Jackson JE (1997) Ind Eng Chem Res 36:3505–3512CrossRefGoogle Scholar
  28. 28.
    Spivey JJ, Roberts GW, Davis BH (2001) Catalyst deactivation 2001. In: Proceedings of the 9th International Symposium, Elsevier: New YorkGoogle Scholar
  29. 29.
    Stein SE NIST chemistry WebBook, NIST Standard Reference Database Number 69. In: Linstrom PJ, Mallard WG (eds), National Institute of Standards and Technology: Gaithersburg, pp 20899Google Scholar
  30. 30.
    Natal-Santiago MA, Dumesic JA (1998) Microcalorimetric. J Catal 175:252–268CrossRefGoogle Scholar
  31. 31.
    Krishnakumar V, Kumar M, Prabavathi N, Mathammal R (2012) Spectrochim. Acta Part A 97:144–154CrossRefGoogle Scholar
  32. 32.
    Jakobsen RJ (1965) Spectrochim Acta 21:433–442CrossRefGoogle Scholar
  33. 33.
    Jakobsen RJ (1971) J Mol Struct 10:300–303CrossRefGoogle Scholar
  34. 34.
    Feairheller W, Katon JE (1967) Spectrochim. Acta Part A 23:2225–2232Google Scholar
  35. 35.
    Regis A, Corset J (1975) Chem Phys Lett 32:462–465CrossRefGoogle Scholar
  36. 36.
    Sun GH, Sun XT, Sun ZH, Wang XQ, Liu XJ, Zhang GH, Xu D (2009) J Cryst Growth 311:3904–3910CrossRefGoogle Scholar
  37. 37.
    Redington RJ (1975) Spectrochim. Acta Part A 31:1699–1705Google Scholar
  38. 38.
    Zholobenko VL, Makarova MA, Dwyer J (1993) J Phys Chem 97:5962–5964CrossRefGoogle Scholar
  39. 39.
    Xu B, Bhawe Y, Davis M (2012) Proc Natl Acad Sci 109:9260–9264CrossRefGoogle Scholar
  40. 40.
    Xu B, Bhawe Y, Davis M (2013) Chem Mater 25:1564–1571CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy InnovationUniversity of DelawareNewarkUSA
  2. 2.Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations