Skip to main content
Log in

Ethanol Oxidation in Water Catalyzed by Gold Nanoparticles Supported on NiO Doped with Cu

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ethanol oxidation in water by molecular oxygen on supported gold nanoparticles (NPs) has been investigated at a temperature as low as 120 °C. Among various base metal oxide supports, NiO provided the highest conversion of ethanol and good selectivity to acetic acid. Furthermore Cu doping to the NiO support to enhance the semiconductivity resulted in an improvement in the selectivity to acetic acid without the depression of the conversion of ethanol. An increase in the specific surface area of the NiO support by Cu doping enabled the deposition of smaller gold NPs and, accordingly, the improvement of the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dingerdissen U, Martin A, Herein D, Wernicke HJ (2008) The development of industrial heterogeneous catalysis. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 1. Wiley, Weinheim, p 44

    Google Scholar 

  2. Renewable Energy Policy Network for the 21st Century (2014) Renewable energy indicators. In: Renewables 2014 global status report, p 15

  3. Takei T, Iguchi N, Haruta M (2011) Synthesis of acetaldehyde, acetic acid, and others by the dehydrogenation and oxidation of ethanol. Catal Surv Asia 15:80–88

    Article  CAS  Google Scholar 

  4. Eguchi Y, Abe D, Yoshitake H (2008) Oxidation state of Ce and ethanol–oxygen reaction of mesoporous titania-supported cerium oxide. Micropor Mesopor Mater 116:44–50

    Article  CAS  Google Scholar 

  5. Jørgensen B, Kristensen SB, Kunov-Kruse AJ, Fehrmann R, Christensen CH, Riisager A (2009) Gas-Phase oxidation of aqueous ethanol by nanoparticle vanadia/anatase catalysts. Top Catal 52:253

    Article  Google Scholar 

  6. Li X, Iglesia E (2007) Selective catalytic oxidation of ethanol to acetic acid on dispersed Mo-V-Nb mixed oxides. Chem Eur J 13:9324

    Article  CAS  Google Scholar 

  7. Gonçalves FM, Medeiros PRS, Appel LG (2001) The role of cerium in the oxidation of ethanol over SnO2-supported molybdenum oxides. Appl Catal A 208:265–270

    Article  Google Scholar 

  8. Lin R, Luo M-F, Xin Q, Sun G-Q (2004) The mechanism studies of ethanol oxidation on PdO catalysts by TPSR techniques. Catal Lett 93:139–144

    Article  CAS  Google Scholar 

  9. Greca MC, Moraes C, Segadães AM (2001) Palladium/alumina catalysts: effect of the processing route on catalytic performance. Appl Catal A 216:267–276

    Article  CAS  Google Scholar 

  10. Mattos LV, Noronha FB (2005) Partial oxidation of ethanol on supported Pt catalysts. J Power Sources 145:10–15

    Article  CAS  Google Scholar 

  11. Takei T, Iguchi N, Haruta M (2011) Support effect in the gas phase oxidation of ethanol over nanoparticulate gold catalysts. New J Chem 35:2227–2233

    Article  CAS  Google Scholar 

  12. Christensen CH, Jørgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Anderson HC, Riisanger A (2006) Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew Chem Int Ed 45:4648–4651

    Article  CAS  Google Scholar 

  13. Jørgensen B, Christensen SE, Thomsen MLD, Christensen CH (2007) Aerobic oxidation of aqueous ethanol using heterogeneous gold catalyst: efficient routes to acetic acid and ethyl acetate. J Catal 251:332–337

    Article  Google Scholar 

  14. Tembe SM, Patrick G, Scurrell MS (2009) Acetic acid production by selective oxidation of ethanol using Au catalysts supported on various metal oxide. Gold Bull 42:321–327

    Article  CAS  Google Scholar 

  15. Sun K-Q, Luo S-W, Xu N, Xu B-Q (2008) Gold nano-size effect in Au/SiO2 for selective ethanol oxidation in aqueous solution. Catal Lett 124:238–242

    Article  CAS  Google Scholar 

  16. Ishida T, Kinoshita N, Okatsu H, Akita T, Takei T, Haruta M (2008) Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew Chem Int Ed 47:9265–9268

    Article  CAS  Google Scholar 

  17. Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Reactivity of the gold/water interface during selective oxidation catalysis. Science 330:74–78

    Article  CAS  Google Scholar 

  18. Ide MS, Davis RJ (2013) The important role of hydroxyl on oxidation catalysis by gold nanoparticles. Acc Chem Res 47:825–833

    Article  Google Scholar 

  19. Ishida T, Ogihara Y, Ohashi H, Akita T, Honma T, Oji H, Haruta M (2012) Base-free direct oxidation of 1-octanol to octanoic acid and its octyl ester over supported gold catalysts. ChemSusChem 5:2243–2248

    Article  CAS  Google Scholar 

  20. Fujitani T, Nakamura I (2011) Mechanism and active sites of the oxidation of CO over Au/TiO2. Angew Chem Int Ed 50:10144–10147

    Article  CAS  Google Scholar 

  21. Maeda Y, Iizuka Y, Kohyama M (2013) Generation of oxygen vacancies at a Au/TiO2 perimeter interface during CO oxidation detected by in situ electrical conductance measurement. J Am Chem Soc 135:906–909

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatake Haruta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takei, T., Suenaga, J., Ishida, T. et al. Ethanol Oxidation in Water Catalyzed by Gold Nanoparticles Supported on NiO Doped with Cu. Top Catal 58, 295–301 (2015). https://doi.org/10.1007/s11244-015-0370-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0370-4

Keywords

Navigation