Skip to main content
Log in

The Interaction of Formic Acid with Zinc Oxide: A Combined Experimental and Theoretical Study on Single Crystal and Powder Samples

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We present azimuth- and polarization-dependent infrared spectroscopy results obtained under ultra-high vacuum conditions on surface species formed by the interaction of formic acid with the mixed-terminated ZnO(10\(\bar{1}\)0) surface. Since there are no previous IRRAS data for formic-acid derived species on any ZnO single crystal surfaces, we have carried out calculations using density function theory to aid the interpretation of the results. From our combined experimental and theoretical data we conclude that two different formate species are formed. The more strongly bound species is a bidentate with the formate molecular plane oriented along the [1\(\bar{2}\)10] direction. The less strongly bound species is a quasi-bidentate with its molecular plane oriented along the [0001] direction. This second species is characterized by a strong hydrogen bond between a surface OH species and the formate. In addition, IR data were recorded for the same molecule adsorbed on commercial ZnO nanoparticles. The different bands of the powder IR-data are assigned on the basis of the experimental and theoretical results obtained for the single crystal surface. This study demonstrates the importance of the Surface Science approach to heterogeneous catalysis also for ZnO, an important catalyst for the conversion of syngas to methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hansen JB, Højlund Nielsen PE (2008) Methanol Synthesis. In: Handbook of Heterogeneous Catalysis. Wiley. doi:10.1002/9783527610044.hetcat0148

  2. Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. Acs Catal 1(4):365–384

    Article  CAS  Google Scholar 

  3. Mittasch A, Pier M (1924) Synthetic manufacture of methanol. United States Patent US 1569775, 12. Jan 1926

  4. Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  5. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobio C 4(2):145–153

    Article  Google Scholar 

  6. Anta JA, Guillén E, Tena-Zaera R (2012) ZnO-based dye sensitized solar cells. J Phys Chem C 116(21):11413–11425

    Article  CAS  Google Scholar 

  7. Davis R, Walsh JF, Muryn CA, Thornton G, Dhanak VR, Prince KC (1993) The orientation of formate and carbonate on ZnO(10-10). Surf Sci 298(1):L196–L202

    Article  CAS  Google Scholar 

  8. Crook S, Dhariwal H, Thornton G (1997) HREELS study of the interaction of formic acid with ZnO(10-10) and ZnO(000-1)-O. Surf Sci 382(1–3):19–25

    Article  CAS  Google Scholar 

  9. Lenz A, Selegard L, Söderlind F, Larsson A, Holtz PO, Uvdal K, Ojamäe L, Kall PO (2009) ZnO nanoparticles functionalized with organic acids: an experimental and quantum-chemical study. J Phys Chem C 113(40):17332–17341

    Article  CAS  Google Scholar 

  10. Teklemichael ST, McCluskey MD (2012) Compensation of acceptors in ZnO nanocrystals by adsorption of formic acid. J Phys Chem C 116(32):17248–17251

    Article  CAS  Google Scholar 

  11. Hayden BE, King A, Newton MA (1999) Fourier transform reflection-absorption IR spectroscopy study of formate adsorption on TiO2(110). J Phys Chem B 103(1):203–208

    Article  CAS  Google Scholar 

  12. Mattsson A, Hu S, Hermansson K, Österlund L (2014) Adsorption of formic acid on rutile TiO2 (110) revisited: an infrared reflection-absorption spectroscopy and density functional theory study. J Chem Phys 140(3):034705

    Article  CAS  Google Scholar 

  13. Nakatsuji H, Yoshimoto M, Umemura Y, Takagi S, Hada M (1996) Theoretical study of the chemisorption and surface reaction of HCOOH on a ZnO(10-10) surface. J Phys Chem 100(2):694–700

    Article  CAS  Google Scholar 

  14. Persson P, Ojamae L (2000) Periodic Hartree–Fock study of the adsorption of formic acid on ZnO(10-10). Chem Phys Lett 321(3–4):302–308

    Article  CAS  Google Scholar 

  15. Persson P, Lunell S, Ojamae L (2002) Quantum chemical prediction of the adsorption conformations and dynamics at HCOOH-covered ZnO(10-10) surfaces. Int J Quantum Chem 89(3):172–180

    Article  CAS  Google Scholar 

  16. Xu MC, Noei H, Buchholz M, Muhler M, Wöll C, Wang YM (2012) Dissociation of formic acid on anatase TiO2(101) probed by vibrational spectroscopy. Catal Today 182(1):12–15

    Article  CAS  Google Scholar 

  17. Freund HJ, Kuhlenbeck H, Libuda J, Rupprechter G, Bäumer M, Hamann H (2001) Bridging the pressure and materials gaps between catalysis and surface science: clean and modified oxide surfaces. Top Catal 15(2–4):201–209

    Article  CAS  Google Scholar 

  18. Wang Y, Kováčik R, Meyer B, Kotsis K, Stodt D, Staemmler V, Qiu H, Traeger F, Langenberg D, Muhler M, Wöll C (2007) CO2 activation by ZnO through the formation of an unusual tridentate surface carbonate. Angew Chem Int Ed 46(29):5624–5627

    Article  CAS  Google Scholar 

  19. Buchholz M, Weidler PG, Bebensee F, Nefedov A, Wöll C (2014) Carbon dioxide adsorption on a ZnO (10-10) substrate studied by infrared reflection absorption spectroscopy. Phys Chem Chem Phys 16:1672–1678

    Article  CAS  Google Scholar 

  20. Greenler RG (1966) Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J Chem Phys 44(1):310–315

    Article  CAS  Google Scholar 

  21. Greenler RG, Snider DR, Witt D, Sorbello RS (1982) The metal-surface selection rule for infrared spectra of molecules adsorbed on small metal particles. Surf Sci 118(3):415–428

    Article  CAS  Google Scholar 

  22. Wöll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82(2–3):55–120

    Article  Google Scholar 

  23. Wang Y, Glenz A, Muhler M, Wöll C (2009) A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries. Rev Sci Instrum 80(11):113106–113108

    Article  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  26. Kresse G, Hafner J (1993) Ab-Initio molecular-dynamics for open-shell transition-metals. Phys Rev B 48(17):13115–13118

    Article  CAS  Google Scholar 

  27. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Phys Rev B 45(23):13244–13249

    Article  Google Scholar 

  28. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  29. Meyer B, Marx D (2003) Density-functional study of the structure and stability of ZnO surfaces. Phys Rev B 67(3):035403

    Article  Google Scholar 

  30. Karzel H, Potzel W, Kofferlein M, Schiessl W, Steiner M, Hiller U, Kalvius GM, Mitchell DW, Das TP, Blaha P, Schwarz K, Pasternak MP (1996) Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys Rev B 53(17):11425–11438

    Article  CAS  Google Scholar 

  31. Duke CB, Meyer RJ, Paton A, Mark P (1978) Calculation of low-energy-electron-diffraction intensities from ZnO (1010).2. Influence of calculational procedure, model potential, and 2nd-layer structural distortions. Phys Rev B 18(8):4225–4240

    Article  CAS  Google Scholar 

  32. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  33. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73(2):515–562

    Article  CAS  Google Scholar 

  34. Pick RM, Cohen MH, Martin RM (1970) Microscopic theory of force constants in adiabatic approximation. Phys Rev B 1(2):910–920

    Article  Google Scholar 

  35. Gonze X, Lee C (1997) Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55(16):10355–10368

    Article  CAS  Google Scholar 

  36. Karhanek D, Bucko T, Hafner J (2010) A density-functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: II.Vibrational spectroscopy. J Phys Condens Matter 22(26):265006

    Article  Google Scholar 

  37. Noei H (2010) Vibrational spectroscopic Studies on Adsorption and Reactions over ZnO—based Catalysts. Dissertation, Ruhr-Universität Bochum, Bochum

  38. Kähler K, Holz MC, Rohe M, Strunk J, Muhler M (2010) Probing the reactivity of ZnO and Au/ZnO nanoparticles by methanol adsorption: a TPD and DRIFTS study. ChemPhysChem 11(12):2521–2529

    Article  Google Scholar 

  39. Busca G, Lorenzelli V (1982) Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater Chem 7(1):89–126

    Article  CAS  Google Scholar 

  40. Nakamoto K (2008) Applications in coordination chemistry. Infrared and Raman spectra of inorganic and coordination compounds. Wiley, Hoboken

    Book  Google Scholar 

  41. Petrie WT, Vohs JM (1991) An HREELS investigation of the adsorption and reaction of formic acid on the (0001)-Zn surface of ZnO. Surf Sci 245(3):315–323

    Article  CAS  Google Scholar 

  42. Koßmann J, Roßmüller G, Hättig C (2012) Prediction of vibrational frequencies of possible intermediates and side products of the methanol synthesis on ZnO(000\(\overline{1}\)) by ab initio calculations. The Journal of Chemical Physics 136 (3):034706

Download references

Acknowledgements

M.B. and Q. L. thank the financial support from the Helmholtz Research School “Energy-related catalysis”. We thank S. Heißler (IFG) for his support and F. Bebensee for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Wöll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchholz, M., Li, Q., Noei, H. et al. The Interaction of Formic Acid with Zinc Oxide: A Combined Experimental and Theoretical Study on Single Crystal and Powder Samples. Top Catal 58, 174–183 (2015). https://doi.org/10.1007/s11244-014-0356-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0356-7

Keywords

Navigation