Skip to main content
Log in

Structural Analysis of Rh–Pd/CeO2 Catalysts Under Reductive Conditions: An X-ray Investigation

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) were used to probe the electronic and geometric structures of Rh–Pd/CeO2 catalysts before and after ethanol steam reforming (ESR) at 400 °C, as well as after heating in CO atmospheres as a function of time and temperatures. The O/Ce ratio determined by XPS for the as-prepared Rh–Pd/CeO2 catalysts (individual metal loadings of 0.5 or 2 wt%) were close to 2, with the Rh and Pd present primarily in oxidized form (as oxide and chloride surface species). After ESR at 400 °C the ceria support was heavily reduced to CeO2−x (x = 0.3–0.4), with Rh0 (64 % of total Rh) and Pd0 (67 % of total Pd) being the dominant species. Heating the as-prepared Rh–Pd/CeO2 catalysts under a CO atmosphere at 200–400 °C while monitoring the Pd and Rh K edges by XAS was also conducted. XAS of the K edge of Pd and Rh indicated, as expected, reduction of Pd before that of Rh from 200 °C onward. The FCC order of Pd is however perturbed at 400 °C. On the contrary, Rh once reduced maintained a well ordered (FCC) structure. This observation is rationalised by the greater reduction effect of Pd on CeO2 compared to Rh and therefore at the interface Pd structure may be altered at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nahar G, Dupont V (2014) Renew Sust Energ Rev 32:777–796

    Article  CAS  Google Scholar 

  2. Ferencz ZS, Erdőhelyi A, Baán K, Oszkó A, Óvári L, Kónya Z, Papp C, Steinrück H-P, Kiss J (2014) ACS Catal 4:1205–1218

    Article  CAS  Google Scholar 

  3. Sheng P-Y, Bowmaker G, Idriss H (2004) Appl Catal A 261:171–181 and references therein

    Article  CAS  Google Scholar 

  4. Sheng P-Y, Chiu W, Yee A, Morrison S, Idriss H (2007) Catal Today 129:313–321

    Article  CAS  Google Scholar 

  5. Sheng P-Y, Yee A, Bowmaker G, Idriss H (2002) J Catal 208:393–403

    Article  CAS  Google Scholar 

  6. Scott M, Chiu W, Blackford MG, Idriss H (2008) Am Chem Soc Div Pet Chem 51:1

    Google Scholar 

  7. Idriss H, Scott M, Llorca J, Chan SC, Chiu W, Sheng P-Y, Yee A, Blackford MA, Pas SJ, Hill AJ, Alamgir FM, Rettew R, Petersburg C, Senanayake SD, Barteau MA (2008) ChemSusChem 1:905–910

    Article  CAS  Google Scholar 

  8. Chen HL, Liu SH, Ho JJ (2006) J Phys Chem B 110:14816–14823

    Article  CAS  Google Scholar 

  9. Craciun R, Shereck B, Gorte RJ (1998) Catal Lett 51:149–153

    Article  CAS  Google Scholar 

  10. Craciun R, Daniell W, Knozinger H (2002) Appl Catal A 230:153–168

    Article  CAS  Google Scholar 

  11. Shido T, Iwasawa Y (1993) J Catal 141:71–81

    Article  CAS  Google Scholar 

  12. Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107–114

    Article  CAS  Google Scholar 

  13. Mavrikakis M, Baumer M, Freund H-J, Norskov JK (2002) Catal Lett 81:153–156

    Article  CAS  Google Scholar 

  14. Yee A, Morrison SJ, Idriss H (2000) Catal Today 63:325–327

    Article  Google Scholar 

  15. Yee A, Morrison SJ, Idriss H (2000) J Catal 191:30–45

    Article  CAS  Google Scholar 

  16. Sheng P-Y, Idriss H (2004) J Vac Sci Technol A 22:1652–1658

    Article  CAS  Google Scholar 

  17. Yee A, Morrison SJ, Idriss H (1999) J Catal 186:279–295

    Article  CAS  Google Scholar 

  18. Diagne C, Idriss H, Pearson K, Gómez-García MA, Kiennemann A (2004) C R Chim 7:617–622

    Article  CAS  Google Scholar 

  19. Idriss H (2004) Platinum Met Rev 48:105–115

    Article  CAS  Google Scholar 

  20. Diagne C, Idriss H, Kiennemann A (2002) Catal Commun 3:565–571

    Article  CAS  Google Scholar 

  21. Shen W-J, Ichihashi Y, Okumura M, Matsumura Y (2000) Catal Lett 64:23–25

    Article  CAS  Google Scholar 

  22. Mukherjee P, Patra CR, Ghosh A, Kumar R, Sastry M (2002) Chem Mater 14:1678–1684

    Article  CAS  Google Scholar 

  23. Ravel B, Newville MJ (2005) J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  24. Newville M (2001) J Synchrotron Radiat 8:322–324

    Article  CAS  Google Scholar 

  25. Rasband WS, Image J (1997–2014) US National Institutes of Health Bethesda Maryland USA http://imagej.nih.gov/ij/ (1997-2014)

  26. Kraus W, Nolze G (2000) Powder Cell 2.4 Federal Institute for Materials Research and Testing Berlin Germany

  27. Yang C, Yin L-L, Bebensee F, Buchholz M, Sezen H, Heissler S, Chen J, Nefedov A, Gong X-Q, Idriss H, Wöll C (2014) Phys Chem Chem Phys 16:24165–24168

  28. Cai W, Wang F, Veen ACV, Provendor H, Mirodatos C, Shen W (2008) Catal Today 138:152–156

    Article  CAS  Google Scholar 

  29. Mayrhofer KJJ, Juhart V, Hartl K, Hanzlik M, Arenz M (2009) Angew Chem Int Edit 48:3529–3531

    Article  CAS  Google Scholar 

  30. Plummer EW, Rhodin TN (1968) J Chem Phys 49:3479–3496

    Article  CAS  Google Scholar 

  31. Dhanak VR, Bassett DW (1990) Surf Sci 238:289–292

    Article  CAS  Google Scholar 

  32. Basset DW (1978) Thin Solid Films 48:237–246

    Article  Google Scholar 

  33. Roux H, Piquet A, Pralong G, Uzan R, Drechsler M (1978) Surf Sci 71:375–386

    Article  CAS  Google Scholar 

  34. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322:932–934

    Article  CAS  Google Scholar 

  35. Ruban AV, Skriver HL, Norskov JK (1999) Phys Rev B 59:15990–16000

    Article  Google Scholar 

  36. Choi Y-M, Scott M, Söhnel T, Idriss H (2014) Phys Chem Chem Phys 16:22588–22599

    Article  CAS  Google Scholar 

  37. Yang ZX, Lu ZS, Luo GX (2007) Phys Rev B 76:075421–075427

    Article  Google Scholar 

  38. Alfredsson M, Catlow CRA (2002) Phys Chem Chem Phys 4:6100–6108

    Article  CAS  Google Scholar 

  39. Wilson EL, Grau-Crespo R, Pang CL, Cabailh G, Chen Q, Purton JA, Catlow CRA, Brown WA, de Leeuw NH, Thornton G (2008) J Phys Chem C 112:10918–10922

    Article  CAS  Google Scholar 

  40. Li B, Ezekoye OK, Zhang Q, Chen L, Cui P, Graham G, Pan X (2010) Phys Rev B 82:125422–125426

    Article  Google Scholar 

Download references

Acknowledgments

This research was undertaken on the XAS beamline at the Australian Synchrotron, Victoria, Australia and the BL01B1 XAFS beamline at the SPring-8 Synchrotron, Hyogo, Japan. The authors are thankful for the beam time and the financial support and Chris Glover, Bernt Johannessen (AS) and Kiyofumi Nitta and Tomoya Uruga (SPring-8) for technical assistance. We thank the Monash Centre for Electron Microscopy, Monash University, Victoria, Australia and the MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand for their support. MS and TS thank R. Dronskowski and his group (RWTH Aachen University) for the hospitality during our research stay and for all the efforts to make our visit so enjoyable. We also thank the University of Auckland for support of this work through grants-in-aid and travel support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Söhnel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, M.S., Waterhouse, G.I.N., Kato, K. et al. Structural Analysis of Rh–Pd/CeO2 Catalysts Under Reductive Conditions: An X-ray Investigation. Top Catal 58, 123–133 (2015). https://doi.org/10.1007/s11244-014-0351-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0351-z

Keywords

Navigation