Skip to main content
Log in

Effect of the TiO2 Crystallite Size, TiO2 Polymorph and Test Conditions on the Photo-Oxidation Rate of Aqueous Methylene Blue

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This study systematically re-examines the titania-catalysed photo-oxidation of methylene blue (MB) in aqueous solution at 20 °C, placing particular emphasis on the effects of TiO2 crystallite size, TiO2 polymorph (anatase, brookite, rutile and combinations thereof) and experimental test conditions on the rate of MB photo-oxidation. For all TiO2 samples tested, the highest rate of MB photo-oxidation was observed at pH 6, slightly above the isoelectric point of TiO2 (~5.8 for P25 TiO2). Increasing the ionic strength at pH 6 induced MB dimer formation in solution, and lowered the rate of MB photo-oxidation by TiO2. For all TiO2 polymorphs, the surface area normalised rate increased with crystallite size reflecting the corresponding reduction in surface and bulk defects (electron–hole pair recombination sites). The optimum crystallite sizes were ~20–25 nm for anatase and ~50 nm for brookite. The photocatalytic activity of the different TiO2 powders followed the general order P25 > anatase > brookite ≫ rutile, with the high activity of P25 TiO2 providing strong evidence that anatase–rutile heterojunctions act as “hotspots” for MB photo-oxidation. Mixed phase anatase–rutile or brookite–rutile powders, each containing ~5 wt% rutile, demonstrated superior area normalized photocatalytic activities for MB photo-oxidation compared to pure phase anatase or brookite powders of comparable crystallite size. Finally, deposition of Pd, Pt or Au nanoparticles decreased the activity of P25 TiO2 for MB photo-oxidation. This paper clarifies long-standing confusion in the scientific literature about the photo-oxidation of aqueous MB over TiO2 and M/TiO2 (M = Pd, Pt and Au) photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bolong N, Ismail AF, Salim MR, Matsuura T (2009) Desalination 1–3:229–246

    Article  Google Scholar 

  2. Petrović M, Gonzalez S, Barceló D (2003) Trac Trends Anal Chem 10:685–696

    Article  Google Scholar 

  3. Malik P (2004) J Hazard Mater 1:81–88

    Article  Google Scholar 

  4. Kim T-H, Park C, Yang J, Kim S (2004) J Hazard Mater 1–2:95–103

    Article  Google Scholar 

  5. Koyuncu I (2002) Desalination 3:243–253

    Article  Google Scholar 

  6. Kobya M, Can OT, Bayramoglu M (2003) J Hazard Mater 1:163–178

    Article  Google Scholar 

  7. Huang CP, Dong C, Tang Z (1993) Waste Manage 5–7:361–377

    Article  Google Scholar 

  8. Chakrabarti S, Dutta BK (2004) J Hazard Mater 3:269–278

    Article  Google Scholar 

  9. Kuo WS, Ho PH (2001) Chemosphere 1:77–83

    Article  Google Scholar 

  10. Syoufian A, Nakashima K (2008) J Colloid Interface Sci 2:507–512

    Article  Google Scholar 

  11. Crittenden JC, Zhang Y, Hand DW, Perram DL, Marchand EG (1996) Water Environ Res 68:270–278

    Article  CAS  Google Scholar 

  12. Wood PM (1988) Biochem J 1:287

    Google Scholar 

  13. Wu C-H, Chern J-M (2006) Ind Eng Chem Res 19:6450–6457

    Article  Google Scholar 

  14. Baiju KV, Shukla S, Sandhya KS, James J, Warrier KGK (2007) J Phys Chem C 21:7612–7622

    Article  Google Scholar 

  15. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Appl Catal B Environ 2:145–157

    Article  Google Scholar 

  16. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2002) Appl Catal B Environ 1:75–90

    Article  Google Scholar 

  17. Talebian N, Nilforoushan MR (2010) Thin Solid Films 8:2210–2215

    Article  Google Scholar 

  18. Konstantinou IK, Albanis TA (2004) Appl Catal B Environ 1:1–14

    Article  Google Scholar 

  19. Lakshmi S, Renganathan R, Fujita S (1995) J Photochem Photobiol A Chem 2–3:163–167

    Article  Google Scholar 

  20. Chang H, Su C, Lo C-H, Chen L-C, Tsung T-T, Jwo C-S (2004) Mater Trans 12:3334–3337

    Article  Google Scholar 

  21. Mills A (2012) Appl Catal B Environ 128:144–149

    Article  CAS  Google Scholar 

  22. Du P, Bueno-Lopez A, Verbaas M, Almeida A, Makkee M, Moulijn J, Mul G (2008) J Catal 1:75–80

    Article  Google Scholar 

  23. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) J Photochem Photobiol A Chem 2–3:179–182

    Article  Google Scholar 

  24. Ohno T, Sarukawa K, Matsumura M (2001) J Phys Chem B 12:2417–2420

    Article  Google Scholar 

  25. Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 31:7634–7642

    Article  Google Scholar 

  26. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  27. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 1:373–380

    Article  Google Scholar 

  28. Tauc J, Menth A (1972) J Non-Cryst Solids 8:569–585

    Article  Google Scholar 

  29. Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira M, Cab C, De Coss R, Oskam G (2008) Nanotechnology 14:145605

    Article  Google Scholar 

  30. Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Nanoscale Res Lett 1:27

    Google Scholar 

  31. Cavigli L, Bogani F, Vinattieri A, Faso V, Baldi G (2009) J Appl Phys 5:053516

    Article  Google Scholar 

  32. Su R, Bechstein R, Sø L, Vang RT, Sillassen M, Esbjörnsson B, Palmqvist A, Besenbacher F (2011) J Phys Chem C 49:24287–24292

    Article  Google Scholar 

  33. Winardi S, Mukti RR, Kumar K-NP, Wang J, Wunderlich W, Okubo T (2010) Langmuir 7:4567–4571

    Article  Google Scholar 

  34. Toyoda M, Nanbu Y, Nakazawa Y, Hirano M, Inagaki M (2004) Appl Catal B Environ 4:227–232

    Article  Google Scholar 

  35. Wang X, Sø L, Su R, Wendt S, Hald P, Mamakhel A, Yang C, Huang Y, Iversen BB, Besenbacher F (2014) J Catal 310:100–108

    Article  CAS  Google Scholar 

  36. Chan C-C, Chang C-C, Hsu W-C, Wang S-K, Lin J (2009) Chem Eng J 2–3:492–497

    Article  Google Scholar 

  37. Chen P, Zhang X (2008) Clean 5–6:507–511

    Google Scholar 

  38. Sangpour P, Hashemi F, Moshfegh AZ (2010) J Phys Chem C 33:13955–13961

    Article  Google Scholar 

  39. Wang X, Waterhouse GIN, Mitchell DRG, Prince K, Caruso RA (2011) ChemCatChem 11:1665–1666

    Article  Google Scholar 

Download references

Acknowledgments

Wan-Ting Chen acknowledges the Energy Education Trust of New Zealand for the award of a doctoral scholarship. The authors acknowledge funding support the MacDiarmid Institute for Advance Materials and Nanotechnology and the Australian Institute of Nuclear Science and Engineering (ALNGRA11126). Geoff Waterhouse thanks the Japan Society for the Promotion of Science (JSPS) for award of a JSPS Fellowship to work in Japan (S13179). The authors thank Dr. Peter Swedlund of the University of Auckland for useful insight regarding the competitive adsorption of MB and phosphate on TiO2 surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey I. N. Waterhouse.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WT., Chan, A., Jovic, V. et al. Effect of the TiO2 Crystallite Size, TiO2 Polymorph and Test Conditions on the Photo-Oxidation Rate of Aqueous Methylene Blue. Top Catal 58, 85–102 (2015). https://doi.org/10.1007/s11244-014-0348-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0348-7

Keywords

Navigation