Skip to main content
Log in

Reaction Mechanisms in the Direct Carboxylation of Alcohols for the Synthesis of Acyclic Carbonates

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Dialkylcarbonates, (RO)2CO, can be prepared from alcohols and CO2. Such reaction is clean (water is the co-product) but thermodynamically disfavored. In principle, the reaction mechanism of formation of carbonates requires the acid–base activation of alcohols. Existing data support that the first step is the formation of the alkoxo group RO that reacts with CO2 to give the hemicarbonate moiety ROC(O)O. The latter converts into the relevant carbonate (RO)2CO following different pathways depending on the catalyst used. DFT calculations have been used in a few cases to support the reaction mechanism. Transition states relevant to various mechanistic scenarios have been identified. The results indicated that the relative energies of these transition states depend on the nature of the alkyl group and the molecularity of the reactive step. Organic catalysts, homogeneous-, heterogenized- and heterogeneous-metal systems are discussed in this paper and the known relevant mechanisms compared. Water represents a serious limitation to equilibrium shift to the right and can affect the catalysts. Techniques used to remove water are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 3
Fig. 12
Scheme 4
Fig. 13
Fig. 14
Scheme 5
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Delledonne D, Rivetti F, Romano U (2001) Appl Catal A: Gen 221(1–2):241–251

    Article  CAS  Google Scholar 

  2. Shaikh AAG, Sivaram S (1996) Chem Rev 96:951–976 and references therein

    Article  CAS  Google Scholar 

  3. Stinson SC (2001) C&EN 79(15):15–16

    Google Scholar 

  4. Serini V (1992) Ullmann’s Enciclopedia of Industrial Chemistry, VCH Publishers, Weinheim A5: 197–201

  5. Pacheco MA, Marshall CL (1997) Energy Fuels 11(1):2–29

    Article  CAS  Google Scholar 

  6. Aresta M, Dibenedetto A (2003) In: Aresta M (ed) Carbon Dioxide: Recovery and Utilization. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 211–260

    Chapter  Google Scholar 

  7. TEXACO study, 2001

  8. Fr Patent (1973) 7 pp FR 2163884 19730831 SNPE

  9. Damle SB, Othmer K (1993) Enciclopedia of Chemical Technology, 4th Ed. 5: 77

  10. Romano U, Tesei R, Massi MM, Rebora P (1980) Ind Eng Chem Prod Res Dev 19(3):396–403

    Article  CAS  Google Scholar 

  11. Romano U (1993) Chim Ind Milan 75(4):303–306

    CAS  Google Scholar 

  12. Nishihira K, Tanaka S, Kodama K, Kaneko T (1992) Eur Pat Appl EP 501:507

    Google Scholar 

  13. Perrotti E, Cipriani G (1974) US Patent 3846468

  14. Romano U, Tesei R, Cipriani G, Micucci L (1980) US Patent 4218391

  15. Matsuzaki T, Nakamura A (1997) Catal Surv Jpn 1:77–88

    Article  CAS  Google Scholar 

  16. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K (1999) Catal Lett 58:225–229

    Article  CAS  Google Scholar 

  17. Aresta M, Dibenedetto A, Pastore C (2003) Inorg Chem 42(10): 3256–3261 and references therein

  18. Ballivet-Tkatchenko D, Douteau O, Stutzmann S (2000) Organomet 19:4563–4567

    Article  CAS  Google Scholar 

  19. Isaacs NS, O’Sullivan B, Verhaelen C (1999) Tetrahedron 55:11949–11956

    Article  CAS  Google Scholar 

  20. Aresta M, Dibenedetto A, Giannoccaro P, Pastore C, Pàpai I, Schubert G (2005) J of Org Chem 70(16):6177–6186

    Article  CAS  Google Scholar 

  21. Sakakura T, Saito Y, Okano M, Choi J-C, Sako T (1998) J Org Chem 63:7095–7096

    Article  CAS  Google Scholar 

  22. Sakakura T, Saito Y, Choi J-C, Masuda T, Sako T, Oriyama T (1999) J Org Chem 64:4506–4508

    Article  CAS  Google Scholar 

  23. Sakakura T, Saito Y, Choi J-C, Sako T (2000) Polyhedron 19:573–576

    Article  CAS  Google Scholar 

  24. Aresta M, Dibenedetto A, Stufano P, Aresta BM, Maggi S, Papai I, Rokob TA, Gabriele B (2010) Dalton Trans 39:6985–6992

    Article  CAS  Google Scholar 

  25. Aresta M, Dibenedetto A, Stufano P, (2009) IP MI 2009A001221

  26. Yamazaki N, Nakahama S, Higashi F (1979) Ind Eng Chem Prod Res Dev 18:249–252

    Article  CAS  Google Scholar 

  27. Kizlink J, Pastucha I (1995) Collect Czech Chem Commun 60:687–692

    Article  CAS  Google Scholar 

  28. Choi J-C, Sakakura T, Sako T (1999) J Am Chem Soc 121:3793–3794

    Article  CAS  Google Scholar 

  29. Kirumakki SR, Nagaraju N, Murthy KVVSBSR, Narayanan S (2002) Appl Catal A: Gen 226(1–2):175–182

    Article  CAS  Google Scholar 

  30. Ballivet-Tkatchenko D, Jerphagnon T, Ligabue R, Plasseraud L, Poinsot D (2003) Appl Catal A: Gen 255:93–99

    Article  CAS  Google Scholar 

  31. Ballivet-Tkatchenko D, Chambrey S, Keiski R, Ligabue R, Plasseraud L, Richard P, Turunen H (2006) Catal Today 115:80–87

    Article  CAS  Google Scholar 

  32. Kohno K, Choi J-C, Ohshima Y, Yili A, Yasuda H, Sakakura T (2008) J Organomet Chem 693:1389–1392

    Article  CAS  Google Scholar 

  33. Ballivet-Tkatchenko D, Chermette H, Plasseraud L, Walter O (2006) Dalton Trans 43:5167–5175

    Article  Google Scholar 

  34. Kohno K, Choi J-C, Ohshima Y, Yasuda H, Sakakura T (2008) ChemSusChem 1:186–188

    Article  CAS  Google Scholar 

  35. Dibenedetto A, Pastore C, Aresta M (2006) Cat Today 115:88–94

    Article  CAS  Google Scholar 

  36. Aresta M, Dibenedetto A, Pastore C, Pàpai I, Schubert G (2006) Top in Catal 40(1–4):71–81

    Article  CAS  Google Scholar 

  37. Aresta M, Dibenedetto A, Pastore C, Cuocci C, Aresta B, Cometa S, De Giglio E (2008) Catal Today 137:125–131

    Article  CAS  Google Scholar 

  38. Tomishige K, Yoshida Y, Arai Y, Kado S, Kunimori K (2006) Catal Today 115:95–101

    Article  Google Scholar 

  39. Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K (2000) J Catal 192:355–362

    Article  CAS  Google Scholar 

  40. Zhong SH, Kong LL, Li HS, Xiao XF (2002) Ranliao Huaxue Xuebao 30(5):454–458

    CAS  Google Scholar 

  41. Ikeda Y, Asadullah M, Fujimoto K, Tomishige K (2001) J Phys Chem B 105:10653–10658

    Article  CAS  Google Scholar 

  42. Ikeda Y, Sakaihori T, Tomishige K, Fujimoto K (2000) Catal Lett 66:59–62

    Article  CAS  Google Scholar 

  43. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wie W (2009) Catal Today 148:221–231

    Article  CAS  Google Scholar 

  44. Tomishige K, Furusawa Y, Ikeda Y, Asadullah M, Fujimoto K (2011) Catal Lett 76:71–74

    Article  Google Scholar 

  45. Jiang C, Guo Y, Wang C, Hu C, Wu Y, Wang E (2003) Appl Catal A: Gen 256:203–212

    Article  CAS  Google Scholar 

  46. Allaoui LA, Acuissi A (2006) J Mol Catal A: Chem 259:281–285

    Article  CAS  Google Scholar 

  47. Jung KT, Bell AT (2001) J Catal 204:339–347

    Article  CAS  Google Scholar 

  48. Aresta M, Dibenedetto A, Pastore C, Angelini A, Aresta B, Pápai I (2010) J Catal 269:44–52

    Article  CAS  Google Scholar 

  49. Finocchio E, Daturi M, Binet C, Lavalley JC, Blanchard G (1999) Catal Today 52:53–63

    Article  CAS  Google Scholar 

  50. Dibenedetto A, Aresta M, Angelini A, Ethiraj J, Aresta BM (2012) Chem-A Eur J 18(33):10324–10334

    Article  CAS  Google Scholar 

  51. Aresta M, Dibenedetto A, Nocito F, Pastore C (2008) Inorg Chimica Acta 361:3215–3220

    Article  CAS  Google Scholar 

  52. Aresta M, Dibenedetto A, Nocito F, Angelini A, Gabriele B (2010) Appl Catal A: Gen 387:113–118

    Article  CAS  Google Scholar 

  53. Fan B, Zhang J, Li R, Fan W (2008) Catal Lett 121:297–302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of us (AA) thanks TOTAL for a partial financial support to part of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Aresta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aresta, M., Dibenedetto, A., Angelini, A. et al. Reaction Mechanisms in the Direct Carboxylation of Alcohols for the Synthesis of Acyclic Carbonates. Top Catal 58, 2–14 (2015). https://doi.org/10.1007/s11244-014-0342-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0342-0

Keywords

Navigation