Topics in Catalysis

, Volume 57, Issue 17–20, pp 1445–1453 | Cite as

Exploratory Catalyst Screening Studies on the Base Free Conversion of Glycerol to Lactic Acid and Glyceric Acid in Water Using Bimetallic Au–Pt Nanoparticles on Acidic Zeolites

  • Rajeesh Kumar Pazhavelikkakath Purushothaman
  • J. van Haveren
  • A. Mayoral
  • I. Melián-Cabrera
  • H. J. HeeresEmail author
Original Paper


The base free oxidation of glycerol with molecular oxygen in water using bimetallic Au–Pt catalysts on three different acidic zeolite supports (H-mordenite, H-β and H-USY) was explored in a batch setup. At temperatures between 140 and 180 °C, lactic acid formation was significant and highest selectivity (60 % lactic acid at 80 % glycerol conversion) was obtained using Au–Pt/USY-600 (180 °C). A selectivity switch to glyceric acid (GLYA) was observed when the reactions were performed at 100 °C. Highest conversion and selectivity towards GLYA were obtained with Au–Pt/H-β as the catalyst (68 % selectivity at 68 % conversion).


Gold catalysts Glycerol Lactic acid Zeolites Oxidation 



The authors would like to thank NWO-ASPECT (The Netherlands) for financial support (ASPECT-project 053.62.020). Gert ten Brink and J. van der Velde (Faculty of Mathetatics and Natural science, University of Groningen) are acknowledged for the TEM and ICP-OES mesurements respectively. PQ-zeolyst is acknowledged for kindly supplying the commercial zeolites.

Supplementary material

11244_2014_316_MOESM1_ESM.pdf (568 kb)
Supplementary material 1 (PDF 567 kb)


  1. 1.
    Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) Angew Chem Int Ed 46:4434–4440CrossRefGoogle Scholar
  2. 2.
    Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13–30CrossRefGoogle Scholar
  3. 3.
    Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chem Soc Rev 37:527–549CrossRefGoogle Scholar
  4. 4.
    Katryniok B, Kimura H, Skrzynska E, Girardon J-S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F (2011) Green Chem 13:1960–1979CrossRefGoogle Scholar
  5. 5.
    Demirel-Gülen S, Lucas M, Claus P (2005) Catal Today 102–103:166–172CrossRefGoogle Scholar
  6. 6.
    Purushothaman RKP, van Haveren J, van Es DS, Melian-Cabrera I, Heeres HJ (2012) Green Chem 14:2031–2037CrossRefGoogle Scholar
  7. 7.
    Pagliaro M, Rossi M (2008) The future of glycerol: new uses of a versatile raw material. RSC publishing, CamridgeGoogle Scholar
  8. 8.
    Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  9. 9.
    Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Chem Commun 696–697Google Scholar
  10. 10.
    Ketchie WC, Murayama M, Davis RJ (2007) Top Catal 44:307–317CrossRefGoogle Scholar
  11. 11.
    Demirel S, Lehnert K, Lucas M, Claus P (2007) Appl Catal B 70:637–643CrossRefGoogle Scholar
  12. 12.
    Fan Y, Zhou C, Zhu X (2009) Catal Rev 51:293–324CrossRefGoogle Scholar
  13. 13.
    Katryniok B, Paul S, Dumeignil F (2010) Green Chem 12:1910–1913CrossRefGoogle Scholar
  14. 14.
    Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502CrossRefGoogle Scholar
  15. 15.
    Kishida H, Jin F, Zhou Z, Moriya T, Enomoto H (2005) Chem Lett 34:1560–1561CrossRefGoogle Scholar
  16. 16.
    Shen Y, Zhang S, Li H, Ren Y, Liu H (2010) Chem Eur J 16:7368–7371CrossRefGoogle Scholar
  17. 17.
    ten Dam J, Kapteijn F, Djanashvili K, Hanefeld U (2011) Catal Commun 13:1–5CrossRefGoogle Scholar
  18. 18.
    Auneau F, Noël S, Aubert G, Besson M, Djakovitch L, Pinel C (2011) Catal Commun 16:144–149CrossRefGoogle Scholar
  19. 19.
    Auneau F, Arani L, Besson M, Djakovitch L, Michel C, Delbecq F, Sautet P, Pinel C (2012) Top Catal 55:474–479CrossRefGoogle Scholar
  20. 20.
    Roy D, Subramaniam B, Chaudhari RV (2011) ACS Catal 1:548–551CrossRefGoogle Scholar
  21. 21.
    Purushothaman RKP, van Haveren J, van Es DS, Melián-Cabrera I, Meeldijk JD, Heeres HJ (2014) Appl Catal B 147:92–100CrossRefGoogle Scholar
  22. 22.
    Xu J, Zhang H, Zhao Y, Yu B, Chen S, Li Y, Hao L, Liu Z (2013) Green Chem 15:1520–1525CrossRefGoogle Scholar
  23. 23.
    Brett GL, He Q, Hammond C, Miedziak PJ, Dimitratos N, Sankar M, Herzing AA, Conte M, Lopez-Sanchez JA, Kiely CJ, Knight DW, Taylor SH, Hutchings GJ (2011) Angew Chem Int Ed 50:10136–10139CrossRefGoogle Scholar
  24. 24.
    Tsuji A, Rao KTV, Nishimura S, Takagaki A, Ebitani K (2011) ChemSusChem 4:542–548CrossRefGoogle Scholar
  25. 25.
    Tongsakul D, Nishimura S, Ebitani K, ACS Catal (2013) 3:2199–2207Google Scholar
  26. 26.
    Liang D, Gao J, Sun H, Chen P, Hou Z, Zheng X (2011) Appl Catal B 106:423–432CrossRefGoogle Scholar
  27. 27.
    Liang D, Gao J, Wang J, Chen P, Wei Y, Hou Z (2011) Catal Commun 12:1059–1062CrossRefGoogle Scholar
  28. 28.
    Villa A, Veith GM, Prati L (2010) Angew Chem. Int Ed 49:4499–4502Google Scholar
  29. 29.
    Ketchie WC, Fang Y-L, Wong MS, Murayama M, Davis RJ (2007) J Catal 250:94–101CrossRefGoogle Scholar
  30. 30.
    West RM, Holm MS, Saravanamurugan S, Xiong J, Beversdorf Z, Taarning E, Christensen CH (2010) J Catal 269:122–130CrossRefGoogle Scholar
  31. 31.
    Pescarmona P, Janssen K, Stroobants C, Molle B, Paul J, Jacobs P, Sels B (2010) Top Catal 53:77–85CrossRefGoogle Scholar
  32. 32.
    Pescarmona PP, Janssen KPF, Delaet C, Stroobants C, Houthoofd K, Philippaerts A, De Jonghe C, Paul JS, Jacobs PA, Sels BF (2010) Green Chem 12:1083–1089CrossRefGoogle Scholar
  33. 33.
    Li L, Stroobants C, Lin K, Jacobs PA, Sels BF, Pescarmona PP (2011) Green Chem 13:1175CrossRefGoogle Scholar
  34. 34.
    Taarning E, Saravanamurugan S, Spangsberg Holm M, Xiong J, West RM, Christensen CH (2009) ChemSusChem 2:625–627CrossRefGoogle Scholar
  35. 35.
    Porta F, Prati L (2004) J Catal 224:397–403CrossRefGoogle Scholar
  36. 36.
    Ketchie W, Murayama M, Davis R (2007) Top Catal 44:307–317CrossRefGoogle Scholar
  37. 37.
    Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Attard GA, Hutchings GJ (2004) Top Catal 27:131–136CrossRefGoogle Scholar
  38. 38.
    Wang H, Yu D, Sun P, Yan J, Wang Y, Huang H (2008) Catal Commun 9:1799–1803CrossRefGoogle Scholar
  39. 39.
    Sun P, Yu D, Fu K, Gu M, Wang Y, Huang H, Ying H (2009) Catal Commun 10:1345–1349CrossRefGoogle Scholar
  40. 40.
    Serrano-Ruiz JC, Dumesic JA (2009) ChemSusChem 2:581–586CrossRefGoogle Scholar
  41. 41.
    Manikyamba P (2003) React Kinet Catal Lett 78:169–173CrossRefGoogle Scholar
  42. 42.
    Watanabe M, Inomata H, Smith RL Jr, Arai K (2001) Appl Catal A 219:149–156CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rajeesh Kumar Pazhavelikkakath Purushothaman
    • 1
    • 2
  • J. van Haveren
    • 2
  • A. Mayoral
    • 3
  • I. Melián-Cabrera
    • 1
  • H. J. Heeres
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of Sustainable Chemistry and Technology, Food and Biobased ResearchWageningen University and Research CentreWageningenThe Netherlands
  3. 3.Laboratorio de Microscopías Avanzadas (LMA) Instituto de Nanociencia de Aragón (INA)Universidad de ZaragozaZaragozaSpain

Personalised recommendations