Electron Donation–Backdonation and the Rules of Catalytic Promotion

Abstract

The rules of classical and electrochemical promotion of catalysis, which allow for the prediction of the effect of electropositive and electronegative promoters on catalytic rate and selectivity on the basis of the catalytic reaction kinetics, are compared with experiment for all relevant catalytic studies during the last two decades and are used to show that the rate versus catalyst work function dependence always parallels the rate versus electron donor reactant dependence. This generalized rule is rationalized both by considering the interaction of the electric field in the effective double layer at the metal catalyst–gas interface with the electric dipoles of the adsorbed reactants and also by considering the electron donation–backdonation between the adsorbed reactants and the catalyst. This generalized promotional rule allows for promoter selection on the basis of the reaction kinetics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Hegedus LL, Aris R, Bell AT, Boudart M, Chen NY, Gates BC, Haag WO, Somorjai GA, Wei J (1987) Catalyst design: progress and perspectives. Wiley, New York

    Google Scholar 

  2. 2.

    Ertl G, Knötzinger H, Weitcamp J (1997) Handbook of catalysis. VCH Publishers, Weinheim

    Google Scholar 

  3. 3.

    Wieckowski A, Savinova E, Vayenas CG (eds) (2003) Catalysis and electrocatalysis at nanoparticles. Marcel Dekker Inc., New York

    Google Scholar 

  4. 4.

    Kiskinova M (ed) (1992) Poisoning and promotion in catalysis based on surface science concepts and experiments. Studies in surface science and catalysis, vol 70. Elsevier, Amsterdam

    Google Scholar 

  5. 5.

    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion. Electrochemical promotion and metal–support interactions. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  6. 6.

    DiCosimo R, Burrington JD, Grasselli RK (1986) Oxidative dehydrodimerization of propylene over a Bi2O3–La2O3 oxide ion-conductive catalyst. J Catal 102:234–239

    CAS  Article  Google Scholar 

  7. 7.

    Haller GL (2003) New catalytic concepts from new materials: understanding catalysis from a fundamental perspective, past, present, and future. J Catal 216(1–2):12–22

    CAS  Article  Google Scholar 

  8. 8.

    Vayenas CG, Brosda S, Pliangos C (2003) The double-layer approach to promotion, electrocatalysis, electrochemical promotion, and metal–support interactions. J Catal 216(1–2):487–504

    CAS  Article  Google Scholar 

  9. 9.

    Stoukides M, Vayenas CG (1981) The effect of electrochemical oxygen pumping on the rate and selectivity of ethylene oxidation on polycrystalline silver. J Catal 70:137–146

    CAS  Article  Google Scholar 

  10. 10.

    Baltruschat H, Anastasijevic NA, Beltowska-Brzezinska M, Hambitzer G, Heitbaum J (1990) Electrochemical detection of organic gases: The development of a formaldehyde sensor. Berichte Bunsengesellschaft der Physikalischen Chemie 94:996–1000

    CAS  Article  Google Scholar 

  11. 11.

    Politova TI, Sobyanin VA, Belyaev VD (1990) Ethylene hydrogenation in electrochemical cell with solid proton-conducting electrolyte. React Kinet Catal Lett 41(2):321–326

    CAS  Article  Google Scholar 

  12. 12.

    Pritchard J (1990) Electrochemical promotion. Nature 343:592

    Article  Google Scholar 

  13. 13.

    Vayenas CG, Bebelis S, Ladas S (1990) Dependence of catalytic rates on catalyst work function. Nature 343:625–627

    CAS  Article  Google Scholar 

  14. 14.

    Nicole J, Comninellis C (1998) Electrochemical promotion of IrO2 catalyst activity for the gas phase combustion of ethylene. J Appl Electrochem 28:223–226

    CAS  Article  Google Scholar 

  15. 15.

    Ploense L, Salazar M, Gurau B, Smotkin ES (1997) Proton spillover promoted isomerization of n-butylenes on Pd-black cathodes/Nafion 117. J Am Chem Soc 119(47):11550–11551

    CAS  Article  Google Scholar 

  16. 16.

    Neophytides S, Tsiplakides D, Stonehart P, Jaksic M, Vayenas CG (1994) Electrochemical enhancement of a catalytic reaction in aqueous solution. Nature 370:45–47

    CAS  Article  Google Scholar 

  17. 17.

    de Lucas-Consuegra A, Princivalle A, Caravaca A, Dorado F, Marouf A, Guizard C, Valverde JL, Vernoux P (2009) Preparation and characterization of a low particle size Pt/C catalyst electrode for the simultaneous electrochemical promotion of CO and C3H6 oxidation. Appl Catal A 365(2):274–280

    Article  CAS  Google Scholar 

  18. 18.

    Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Electrochemical promotion of platinum impregnated catalyst for the selective catalytic reduction of NO by propene in presence of oxygen. Appl Catal B 73(1–2):42–50

    CAS  Article  Google Scholar 

  19. 19.

    Vayenas CG, Koutsodontis CG (2008) Non-faradaic electrochemical activation of catalysis. J Chem Phys 128(18):182506

    Article  CAS  Google Scholar 

  20. 20.

    Tsiplakides D, Balomenou S (2009) Milestones and perspectives in electrochemically promoted catalysis. Catal Today 146(3–4):312–318

    CAS  Article  Google Scholar 

  21. 21.

    Katsaounis A (2010) Recent developments and trends in the electrochemical promotion of catalysis (EPOC). J Appl Electrochem 40(5):885–902

    CAS  Article  Google Scholar 

  22. 22.

    Vayenas CG (2011) Bridging electrochemistry and heterogeneous catalysis. J Solid State Electrochem 15:1425–1435

    CAS  Article  Google Scholar 

  23. 23.

    Vayenas C (2013) Promotion, electrochemical promotion and metal–support interactions: their common features. Catal Lett 143(11):1085–1097

    CAS  Article  Google Scholar 

  24. 24.

    Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuegra A, Valverde J-L, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Ionically conducting ceramics as active catalyst supports. Chem Rev 113(10):8192–8260

    CAS  Article  Google Scholar 

  25. 25.

    Lambert R (2003) Electrochemical and chemical promotion by alkalis with metal films and nanoparticles. In: Savinova E, Vayenas CG, Wieckowski A (eds) Catalysis and electrocatalysis at nanoparticles. Marcel Dekker Inc., New York

    Google Scholar 

  26. 26.

    Tsiplakides D, Vayenas CG (2001) Electrode work function and absolute potential scale in solid-state electrochemistry. J Electrochem Soc 148(5):E189–E202

    CAS  Article  Google Scholar 

  27. 27.

    Bebelis S, Karasali H, Vayenas CG (2008) Electrochemical promotion of CO2 hydrogenation on Rh/YSZ electrodes. J Appl Electrochem 38(8):1127–1133

    CAS  Article  Google Scholar 

  28. 28.

    de Lucas-Consuegra A, Dorado F, Jiménez-Borja C, Valverde JL (2008) Influence of the reaction conditions on the electrochemical promotion by potassium for the selective catalytic reduction of N2O by C3H6 on platinum. Appl Catal B 78(3–4):222–231

    Article  CAS  Google Scholar 

  29. 29.

    Palermo A, Lambert RM, Harkness IR, Yentekakis IV, Mar’ina O, Vayenas CG (1996) Electrochemical promotion by Na of the platinum-catalyzed reaction between CO and NO. J Catal 161(1):471–479

    CAS  Article  Google Scholar 

  30. 30.

    Kotsionopoulos N, Bebelis S (2005) Electrochemical promotion of the oxidation of propane on Pt/YSZ and Rh/YSZ catalyst-electrodes. J Appl Electrochem 35(12):1253–1264

    CAS  Article  Google Scholar 

  31. 31.

    Vayenas CG, Brosda S, Pliangos C (2001) Rules and mathematical modeling of electrochemical and chemical promotion: 1. Reaction classification and promotional rules. J Catal 203(2):329–350

    CAS  Article  Google Scholar 

  32. 32.

    Brosda S, Vayenas CG (2002) Rules and mathematical modeling of electrochemical and classical promotion. 2. Modeling. J Catal 208:38–53

    CAS  Article  Google Scholar 

  33. 33.

    Brosda S, Vayenas CG, Wei J (2006) Rules of chemical promotion. Appl Catal B 68(3–4):109–124

    CAS  Article  Google Scholar 

  34. 34.

    Campbell IM (1988) Chemisorption processes at solid surfaces. Catalysis at Surfaces. Chapman and Hall, London, pp 132–159

    Google Scholar 

  35. 35.

    Coulston GW, Haller GL (1991) The dynamics of CO oxidation on Pd, Rh, and Pt studied by high-resolution infrared chemiluminescence spectroscopy. J Chem Phys 95(9):6932–6944

    CAS  Article  Google Scholar 

  36. 36.

    Campbell CT, Ertl G, Kuipers H, Segner J (1980) A molecular beam study of the catalytic oxidation of CO on a Pt(111) surface. J Chem Phys 73(11):5862–5873

    CAS  Article  Google Scholar 

  37. 37.

    Blyholder G (1964) Molecular orbital view of chemisorbed carbon monoxide. J Phys Chem 68:2772–2777

    CAS  Article  Google Scholar 

  38. 38.

    Theleritis D, Souentie S, Siokou A, Katsaounis A, Vayenas CG (2012) Hydrogenation of CO2 over Ru/YSZ electropromoted catalysts. ACS Catal 2(5):770–780

    CAS  Article  Google Scholar 

  39. 39.

    Yentekakis IV, Moggridge G, Vayenas CG, Lambert RM (1994) In situ controlled promotion of catalyst surfaces via NEMCA: the effect of Na on the Pt-catalyzed CO oxidation. J Catal 146(1):292–305

    CAS  Article  Google Scholar 

  40. 40.

    Vernoux P, Gaillard F, Bultel L, Siebert E, Primet M (2002) Electrochemical promotion of propane and propene oxidation on Pt/YSZ. J Catal 208(2):412–421

    CAS  Article  Google Scholar 

  41. 41.

    Kotsionopoulos N, Bebelis S (2007) In situ electrochemical modification of catalytic activity for propane combustion of Pt/β″-Al2O3 catalyst-electrodes. Top Catal 44(3):379–389

    CAS  Article  Google Scholar 

  42. 42.

    Bebelis S, Vayenas CG (1989) Non-faradaic electrochemical modification of catalytic activity: 1. The case of ethylene oxidation on Pt. J Catal 118(1):125–146

    CAS  Article  Google Scholar 

  43. 43.

    Pliangos C, Yentekakis IV, Ladas S, Vayenas CG (1996) Non-faradaic electrochemical modification of catalytic activity: 9. Ethylene oxidation on Pt deposited on TiO2. J Catal 159(1):189–203

    CAS  Article  Google Scholar 

  44. 44.

    Vayenas CG, Bebelis S, Despotopoulou M (1991) Non-faradaic electrochemical modification of catalytic activity 4. The use of β″-Al2O3 as the solid electrolyte. J Catal 128(2):415–435

    CAS  Article  Google Scholar 

  45. 45.

    Tsampas MN, Sapountzi FM, Vayenas CG (2009) Electrochemical promotion of CO oxidation on Pt/YSZ: the effect of catalyst potential on the induction of highly active stationary and oscillatory states. Catal Today 146(3–4):351–358

    CAS  Article  Google Scholar 

  46. 46.

    Yentekakis IV, Vayenas CG (1994) In situ controlled promotion of Pt for CO oxidation via NEMCA using CaF2, as the solid electrolyte. J Catal 149(1):238–242

    CAS  Article  Google Scholar 

  47. 47.

    Peng-Ont S, Praserthdam P, Matei F, Ciuparu D, Brosda S, Vayenas CG (2012) Electrochemical promotion of propane and methane oxidation on sputtered Pd catalyst-electrodes deposited on YSZ. Catal Lett 142(11):1336–1343

    CAS  Article  Google Scholar 

  48. 48.

    Giannikos A, Frantzis AD, Pliangos C, Bebelis S, Vayenas CG (1998) Electrochemical promotion of CH4 oxidation on Pd. Ionics 4(1–2):53–60

    CAS  Article  Google Scholar 

  49. 49.

    Frantzis AD, Bebelis S, Vayenas CG (2000) Electrochemical promotion (NEMCA) of CH4 and C2H4 oxidation on Pd/YSZ and investigation of the origin of NEMCA via AC impedance spectroscopy. Solid State Ionics 136–137:863–872

    Article  Google Scholar 

  50. 50.

    Jiménez-Borja C, Delgado B, Dorado F, Valverde JL (2013) Experimental data and kinetic modeling of the catalytic and electrochemically promoted CH4 oxidation over Pd catalyst-electrodes. Chem Eng J 225:315–322

    Article  CAS  Google Scholar 

  51. 51.

    Matei F, Ciuparu D, Jiménez-Borja C, Dorado F, Valverde JL, Brosda S (2012) Electrochemical promotion of methane oxidation on impregnated and sputtered Pd catalyst-electrodes deposited on YSZ. Appl Catal B 127:18–27

    CAS  Article  Google Scholar 

  52. 52.

    Giannikos A, Petrolekas P, Pliangos C, Frenzel A, Vayenas CG, Pütter H (1998) Electrochemical promotion of Pd for the hydrogenation of C2H2. Ionics 4(3–4):161–169

    CAS  Article  Google Scholar 

  53. 53.

    Pliangos C, Yentekakis IV, Verykios XE, Vayenas CG (1995) Non-faradaic electrochemical modification of catalytic activity: VIII. Rh-catalyzed C2H4 oxidation. J Catal 154(1):124–136

    CAS  Article  Google Scholar 

  54. 54.

    Baranova EA, Thursfield A, Brosda S, Fóti G, Comninellis C, Vayenas CG (2005) Electrochemical promotion of ethylene oxidation over Rh catalyst thin films sputtered on YSZ and TiO2/YSZ supports. J Electrochem Soc 152(2):E40–E49

    CAS  Article  Google Scholar 

  55. 55.

    Kokkofitis C, Karagiannakis G, Stoukides M (2007) Electrochemical promotion in O2-cells during propane oxidation. Top Catal 44(3):361–368

    CAS  Article  Google Scholar 

  56. 56.

    Stoukides M, Vayenas CG (1984) Electrocatalytic rate enhancement of propylene epoxidation on porous silver electrodes using a zirconia oxygen pump. J Electrochem Soc 131(4):839–845

    CAS  Article  Google Scholar 

  57. 57.

    Karavasilis C, Bebelis S, Vayenas CG (1996) Non-faradaic electrochemical modification of catalytic activity: X. Ethylene epoxidation on Ag deposited on stabilized ZrO2 in the presence of chlorine moderators. J Catal 160(2):190–204

    CAS  Article  Google Scholar 

  58. 58.

    Tsiakaras P, Vayenas CG (1993) Oxidative coupling of CH4 on Ag catalyst-electrodes deposited on ZrO2 (8 mol% Y2O3). J Catal 144(1):333–347

    CAS  Article  Google Scholar 

  59. 59.

    Peng-Ont S, Souentie S, Assabumrungrat S, Praserthdam P, Brosda S, Vayenas CG (2013) Electrochemical promotion of propane oxidation over Pd, Ir, and Ru catalyst-electrodes deposited on YSZ. Ionics 19:1705–1714

    CAS  Article  Google Scholar 

  60. 60.

    Varkaraki E, Nicole J, Plattner E, Comninellis C, Vayenas CG (1995) Electrochemical promotion of IrO2 catalyst for the gas phase combustion of ethylene. J Appl Electrochem 25(10):978–981

    CAS  Google Scholar 

  61. 61.

    Tsiplakides D, Nicole J, Vayenas CG, Comninellis C (1998) Work function and catalytic activity measurements of an IrO2 film deposited on YSZ subjected to in situ electrochemical promotion. J Electrochem Soc 145(3):905–908

    CAS  Article  Google Scholar 

  62. 62.

    Wodiunig S, Comninellis C (1999) Electrochemical promotion of RuO2 catalysts for the gas phase combustion of C2H4. J Eur Ceram Soc 19(6–7):931–934

    CAS  Article  Google Scholar 

  63. 63.

    Pitselis GE, Petrolekas PD, Vayenas CG (1997) Electrochemical promotion of ammonia decomposition over Fe catalyst films interfaced with K+- and H+-conductors. Ionics 3(1–2):110–116

    CAS  Article  Google Scholar 

  64. 64.

    Yentekakis IV, Jiang Y, Makri M, Vayenas CG (1995) Ethylene production from methane in a gas recycle electrocatalytic reactor separator. Ionics 1:286–291

    CAS  Article  Google Scholar 

  65. 65.

    Kaloyannis A, Vayenas CG (1999) Non-faradaic electrochemical modification of catalytic activity. 12: propylene oxidation on Pt. J Catal 182:37–47

    CAS  Article  Google Scholar 

  66. 66.

    Makri M, Buekenhoudt A, Luyten J, Vayenas CG (1996) Non-faradaic electrochemical modification of the catalytic activity of Pt using a CaZr0.9In0.1O3−α proton conductor. Ionics 2(3–4):282–288

    CAS  Article  Google Scholar 

  67. 67.

    Thursfield A, Brosda S, Pliangos C, Schober T, Vayenas CG (2003) Electrochemical promotion of an oxidation reaction using a proton conductor. Electrochim Acta 48(25–26):3779–3788

    CAS  Article  Google Scholar 

  68. 68.

    Poulidi D, Castillo-del-Rio MA, Salar R, Metcalfe IS (2003) Electrochemical promotion of catalysis using solid-state proton-conducting membranes. Solid State Ionics 162–163:305–311

    Article  CAS  Google Scholar 

  69. 69.

    Poulidi D, Metcalfe IS (2006) Electrochemical promotion of a metal catalyst supported on a mixed-ionic conductor. Solid State Ionics 177(26–32):2211–2215

    CAS  Article  Google Scholar 

  70. 70.

    Petrolekas PD, Balomenou S, Vayenas CG (1998) Electrochemical promotion of ethylene oxidation on Pt catalyst films deposited on CeO2. J Electrochem Soc 145(4):1202–1206

    CAS  Article  Google Scholar 

  71. 71.

    de Lucas-Consuegra A, González-Cobos J, García-Rodríguez Y, Mosquera A, Endrino JL, Valverde JL (2012) Enhancing the catalytic activity and selectivity of the partial oxidation of methanol by electrochemical promotion. J Catal 293:149–157

    Article  CAS  Google Scholar 

  72. 72.

    Marwood M, Kaloyannis A, Vayenas CG (1996) Electrochemical promotion of the NO reduction by C2H4 on Pt/YSZ and by CO on Pd/YSZ. Ionics 2(3–4):302–311

    CAS  Article  Google Scholar 

  73. 73.

    Marwood M, Vayenas CG (1997) Electrochemical promotion of the catalytic reduction of NO by CO on palladium. J Catal 170(2):275–285

    CAS  Article  Google Scholar 

  74. 74.

    Haller GL, Kim S (1997) Electrochemical promotion of Pd-catalyzed oxidation of CO by NO on yttria-stabilized zirconia. Prepr Am Chem Soc Div Pet Chem 42(1):115–155

    Google Scholar 

  75. 75.

    Hong JK, Oh IH, Hong SA, Lee WY (1996) Electrochemical oxidation of methanol over a Silver electrode depoisted on Yttria-stabilized Zirconia electrolyte. J Catal 163:95–105

    CAS  Article  Google Scholar 

  76. 76.

    Neophytides S, Vayenas CG (1989) Non-faradaic electrochemical modification of catalytic activity: 2. The case of methanol dehydrogenation and decomposition on Ag. J Catal 118(1):147–163

    CAS  Article  Google Scholar 

  77. 77.

    Mar’ina OA, Sobyanin VA, Belyaev VD, Parmon VN (1992) The effect of electrochemical oxygen pumping on catalytic properties of Ag and Au electrodes at gas-phase oxidation of CH4. Catal Today 13(4):567–570

    Article  Google Scholar 

  78. 78.

    Karavasilis C, Bebelis S, Vayenas CG (1996) In situ controlled promotion of catalyst surfaces via NEMCA: the effect of Na on the Ag-catalyzed ethylene epoxidation in the presence of chlorine moderators. J Catal 160(2):205–213

    Article  Google Scholar 

  79. 79.

    Vayenas CG, Jaksic MM, Bebelis S, Neophytides SG (1996) The electrochemical activation of catalysis. In: Bockris JOM, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 29. Kluwer Academic/Plenum Publishers, New York, pp 57–202

    Google Scholar 

  80. 80.

    Yiokari CG, Pitselis GE, Polydoros DG, Katsaounis AD, Vayenas CG (2000) High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst. J Phys Chem A 104(46):10600–10602

    CAS  Article  Google Scholar 

  81. 81.

    Petrolekas PD, Brosda S, Vayenas CG (1998) Electrochemical promotion of Pt catalyst electrodes deposited on Na3Zr2Si2PO12 during ethylene oxidation. J Electrochem Soc 145(5):1469–1477

    CAS  Article  Google Scholar 

  82. 82.

    Vayenas CG, Bebelis S, Yentekakis IV, Tsiakaras P, Karasali H (1990) Non-Faradaic electrochemical modification of catalytic activity on Pt metals. Platin Met Rev 34(3):122–130

    CAS  Google Scholar 

  83. 83.

    Yentekakis IV, Vayenas CG (1988) The effect of electrochemical oxygen pumping on the steady-state and oscillatory behavior of CO oxidation on polycrystalline Pt. J Catal 111(1):170–188

    CAS  Article  Google Scholar 

  84. 84.

    Neophytides S, Tsiplakides D, Stonehardt P, Jaksic M, Vayenas CG (1994) Electrochemical enhancement od catalytic reaction in aqueous solution. Nature 370:292–294

    Article  Google Scholar 

  85. 85.

    Tsiplakides D, Neophytides SG, Enea O, Jaksic M, Vayenas CG (1997) Nonfaradaic Electrochemical modification of the catalytic activity of Pt-black electrodes deposited on Nafion 117 solid polymer electrolytes. J Electrochem Soc 144(6):2072–2078

    CAS  Article  Google Scholar 

  86. 86.

    Lambert RM, Tikhov M, Palermo A, Yentekakis IV, Vayenas CG (1995) Electrochemical promotion of environmentally important catalytic reactions. Ionics 1(5–6):366–376

    CAS  Article  Google Scholar 

  87. 87.

    Marina OA, Yentekakis IV, Vayenas CG, Palermo A, Lambert RM (1997) In situ controlled promotion of catalyst surfaces via NEMCA: the effect of Na on the Pt-catalyzed NO reduction by H2. J Catal 166(2):218–228

    CAS  Article  Google Scholar 

  88. 88.

    Kokkofitis C, Karagiannakis G, Zisekas S, Stoukides M (2005) Catalytic study and electrochemical promotion of propane oxidation on Pt/YSZ. J Catal 234(2):476–487

    CAS  Article  Google Scholar 

  89. 89.

    Kaloyannis A, Vayenas CG (1997) Non-faradaic electrochemical modification of catalytic activity. J Catal 171(1):148–159

    CAS  Article  Google Scholar 

  90. 90.

    Tsiakaras P, Vayenas CG (1993) Non-faradaic electrochemical modification of catalytic activity: VII. The case of methane oxidation on platinum. J Catal 140(1):53–70

    CAS  Article  Google Scholar 

  91. 91.

    Vayenas CG, Neophytides S (1991) Non-faradaic electrochemical modification of catalytic activity III. The case of methanol oxidation on Pt. J Catal 127(2):645–664

    CAS  Article  Google Scholar 

  92. 92.

    Vayenas CG, Bebelis S, Yentekakis IV, Lintz HG (1992) Non-faradaic electrochemical modification of catalytic activity: a status report. Catal Today 11(3):303–438

    CAS  Article  Google Scholar 

  93. 93.

    Pliangos C, Raptis C, Badas T, Vayenas CG (2000) Electrochemical promotion of NO reduction by C3H6 on Rh/YSZ catalyst-electrodes. Solid State Ionics 136–137:767–773

    Article  Google Scholar 

  94. 94.

    Raptis C, Badas T, Tsiplakides D, Pliangos C, Vayenas CG (2000) Electrochemical promotion of NO reduction by C3H6 on Rh/YSZ catalyst—electrodes and investigation of the origin of the promoting action using TPD and WF measurements. In: Avelino Corma FVMSM, José Luis GF (eds) Studies in surface science and catalysis, vol 130. Elsevier, Amsterdam, pp 1283–1288

    Google Scholar 

  95. 95.

    Pliangos C, Raptis C, Badas T, Vayenas CG (2000) Electrochemical promotion of NO reduction by C3H6 and CO on Rh/YSZ catalyst—Electrodes. Ionics 6(1–2):119–126

    CAS  Article  Google Scholar 

  96. 96.

    Constantinou I, Archonta D, Brosda S, Lepage M, Sakamoto Y, Vayenas CG (2007) Electrochemical promotion of NO reduction by C3H6 on Rh catalyst-electrode films supported on YSZ and on dispersed Rh/YSZ catalysts. J Catal 251(2):400–409

    CAS  Article  Google Scholar 

  97. 97.

    Constantinou I, Bolzonella I, Pliangos C, Comninellis C, Vayenas CG (2005) Electrochemical promotion of RuO2 catalysts for the combustion of toluene and ethylene. Catal Lett 100(3–4):125–133

    CAS  Article  Google Scholar 

  98. 98.

    Karavasilis C, Bebelis S, Vayenas CG (1991) Non-faradaic electrochemical modification of catalytic activity in stabilized zirconia cells: the oxidation of CO on polycrystalline Ag. Mater Sci Forum 76:175–179

    CAS  Article  Google Scholar 

  99. 99.

    Politova TI, Gal’vita VV, Belyaev VD, Sobyanin VA (1997) Non-faradaic catalysis: the case of CO oxidation over Ag–Pd alloy electrode in a solid oxide electrolyte cell. Catal Lett 44(1–2):75–81

    CAS  Article  Google Scholar 

  100. 100.

    Mar’ina OA, Sobyanin VA (1992) The effect of electrochemical oxygen pumping on the rate of CO oxidation on Au electrode-catalyst. Catal Lett 13(1–2):61–69

    Article  Google Scholar 

  101. 101.

    Pacchioni G, Illas F, Neophytides S, Vayenas CG (1996) Quantum-chemical study of electrochemical promotion in catalysis. J Phys Chem 100:16653–16661

    CAS  Article  Google Scholar 

  102. 102.

    Pacchioni G, Lomas JR, Illas F (1997) Electric field effects in heterogeneous catalysis. Mol Catal A 119:263–273

    CAS  Article  Google Scholar 

  103. 103.

    Rojas MI, Mariscal MM, Leiva EPM (2010) Computer simulation of reversible electrochemical catalyst promoter dosing. Electrochim Acta 55(28):8673–8679

    CAS  Article  Google Scholar 

  104. 104.

    Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA 108(3):937–943

    Article  Google Scholar 

  105. 105.

    Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45(2000):71–129

    CAS  Google Scholar 

  106. 106.

    Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbœk B, Bligaard T, Nørskov JK (2009) Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces. J Phys Chem C 113(24):10548–10553

    CAS  Article  Google Scholar 

  107. 107.

    Pallassana V, Neurock M (2000) Electronic factors governing ethylene hydrogenation and dehydrogenation activity of pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(111), and PdML/Au(111) surfaces. J Catal 191(2):301–317

    CAS  Article  Google Scholar 

  108. 108.

    Koverga AA, Frank S, Koper MTM (2013) Density functional theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces. Electrochim Acta 101:244–253

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Work supported by the “ARISTEIA” Action of the “Operational programme of education and lifelong learning” which is co-funded by the European Social Fund (ESF) and National Resources.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Costas G. Vayenas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vayenas, C.G., Brosda, S. Electron Donation–Backdonation and the Rules of Catalytic Promotion. Top Catal 57, 1287–1301 (2014). https://doi.org/10.1007/s11244-014-0294-4

Download citation

Keywords

  • Promotion
  • Electrochemical promotion of catalysis (EPOC)
  • Electron donation–backdonation
  • Rules of promotion
  • Effective double layer