Skip to main content

Observation of Sublattice Disordering of the Catalytic Sites in a Complex Mo–V–Nb–Te–O Oxidation Catalyst Using High Temperature STEM Imaging

Abstract

A Mo–V–Nb–Te–O oxidation catalyst has been imaged using scanning transmission electron microscopy at 780 K, which is slightly above its operating temperature. We observe a sublattice disordering of the corner-sharing octahedra forming the catalytic sites containing V5+ while the edge-sharing pentagonal bipyramidal {Nb(Mo5)} sublattice remains structurally more rigid and thereby maintains the overall structural integrity of the catalyst. Imaging the termination of the edges of the [001] basal zones at room temperature reveal a preference for presence of a closed network of secondary structural {Nb(Mo)5} units providing further evidence of the stability of this sublattice structure. We propose that sublattice disordering of catalytic sites enables structural flexibility to accommodate different oxidation states during multistep chemical reactions within a more rigid superstructure and presents a new paradigm for compositionally and structurally complex catalysts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Grasselli R (2002) Top Catal 21:79

    CAS  Article  Google Scholar 

  2. 2.

    Ushikubo T, Sawaki L, Inumaru K, Kobayakawa S (1995) United States Patent No. US5422328 and patents referred to therein

  3. 3.

    Oshihara K, Hisano T, Ueda W (2001) Top Catal 15:153

    CAS  Article  Google Scholar 

  4. 4.

    Guliants VV, Bhandari R, Hughett AR, Bhatt S, Schuler BD, Brongersma HH, Knoester A, Gaffney AM, Han S (2006) J Phys Chem B 110:6129

    CAS  Article  Google Scholar 

  5. 5.

    Naraschewski FN, Jentys A, Lercher JA (2011) Top Catal 54:639

    CAS  Article  Google Scholar 

  6. 6.

    Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P Jr, Lugmair CG, Volpe AF Jr, Weingand T (2003) Top Catal 23:5

    CAS  Article  Google Scholar 

  7. 7.

    Holmberg J, Grasselli RK, Andersson A (2004) Appl Catal A 270:121

    CAS  Article  Google Scholar 

  8. 8.

    Korovchenko P, Shiju NR, Dozier AK, Graham UM, Guerrero-Pérez MO, Guliants VV (2008) Top Catal 50:43

    CAS  Article  Google Scholar 

  9. 9.

    Deniau B, Bergeret G, Jouguet B, Dubois JL, Millet JMM (2008) Top Catal 50:33

    CAS  Article  Google Scholar 

  10. 10.

    DeSanto P Jr, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF Jr, Toby BH, Vogt T (2003) Top Catal 23:23

    CAS  Article  Google Scholar 

  11. 11.

    DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2004) Z Kristallogr 219:152

    CAS  Google Scholar 

  12. 12.

    Li X, Buttrey DJ, Blom DA, Vogt T (2011) Top Catal 54:614

    CAS  Article  Google Scholar 

  13. 13.

    Grasselli RK (2005) Catal Today 99:23

    CAS  Article  Google Scholar 

  14. 14.

    Amakawa K, Kolen’ko YV, Villa A, Schuster ME, Csepei L-I, Weinberg G, Wrabetz S, d’Alnoncourt RN, Girdsdies F, Prati L, Schlögl R, Trunschke A (2013) ACS Catal 3:1103

    CAS  Article  Google Scholar 

  15. 15.

    Hävecker M, Wrabetz S, Kröhnert J, Csepei L-I, d’Alnoncourt RN, Kolen’ko, Girdsdies F, Schlögl R, Trunschke A (2012) J Catal 285:48

    Article  Google Scholar 

  16. 16.

    Zhang W, Trunschke A, Schlögl R, Su DS (2010) Angew Chem Int Ed 49:6084

    CAS  Article  Google Scholar 

  17. 17.

    Blom DA, Li X, Mitra S, Vogt T, Buttrey DJ (2011) ChemCatChem 3:1028

    CAS  Article  Google Scholar 

  18. 18.

    Grasselli RK, Lugmair CG, Volpe AF (2011) Top Catal 54:595

    CAS  Article  Google Scholar 

  19. 19.

    Wachs IE, Jehng J, Ueda W (2005) J Phys Chem B 109:2275

    CAS  Article  Google Scholar 

  20. 20.

    Schlögl R (2011) Top Catal 54:627

    Article  Google Scholar 

  21. 21.

    Pyrz W, Blom DA, Vogt T, Buttrey DJ (2008) Angew Chem Int Ed 47:2788

    CAS  Article  Google Scholar 

  22. 22.

    Pyrz W, Blom DA, Shiju NR, Guliants VV, Vogt T, Buttrey DJ (2008) J Phys Chem C 112:10043

    CAS  Article  Google Scholar 

  23. 23.

    Blom DA (2012) Ultramicroscopy 112:69

    CAS  Article  Google Scholar 

  24. 24.

    Blom, DA (2013) Unpublished

Download references

Acknowledgments

We thank the USC NanoCenter for financial support for beam time on the JEOL 2100 F and travel support to ORNL. We also thank A. F. Volpe Jr., C. G. Lugmair, and R. K. Grasselli for providing the M1 specimen used in this study. Microscopy research at the Oak Ridge National Laboratory was sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, as part of the Propulsion Materials Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Buttrey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blom, D.A., Vogt, T., Allard, L.F. et al. Observation of Sublattice Disordering of the Catalytic Sites in a Complex Mo–V–Nb–Te–O Oxidation Catalyst Using High Temperature STEM Imaging. Top Catal 57, 1138–1144 (2014). https://doi.org/10.1007/s11244-014-0278-4

Download citation

Keywords

  • MoVNbTeO catalyst
  • M1 phase
  • Selective oxidation
  • Ammoxidation
  • Sublattice disorder
  • Active site
  • STEM imaging