Skip to main content
Log in

Density-Functional Theoretical Study on the Role of Lewis and Brønsted Acid Sites on CeO2(110) Surfaces for Nitrile Hydration

  • OriginalPaper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hydration of cyanopyridine on CeO2(110) surfaces was studied using periodic DFT+U calculations. One of two adsorption modes of 2-cyanopyridine occurs with two-point interaction which causes substrate specificity. A catalytic cycle for the hydration of 2-cyanopyridine was proposed. Cooperativity of Lewis and Brønsted acid sites was found to stabilize the intermediates for the hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kamimura Y, Sato S, Takahashi R, Sodesawa T, Fukui M (2000) Chem Lett 3:232

    Article  Google Scholar 

  2. Akashi T, Sato S, Takahashi R, Sodesawa T, Inui K (2003) Catal Commun 4:411

    Article  CAS  Google Scholar 

  3. Hendren TS, Dooley KM (2003) Catal Today 85:333

    Article  CAS  Google Scholar 

  4. Kamimura Y, Sato S, Takahashi R, Sodesawa T, Akashi T (2003) Appl Catal A 252:399

    Article  CAS  Google Scholar 

  5. Sato S, Takahashi R, Sodesawa T, Honda N, Shimizu H (2003) Catal Commun 4:77

    Article  CAS  Google Scholar 

  6. Honda M, Suzuki A, Noorjahan B, Fujimoto K, Suzuki K, Tomishige K (2009) Chem Commun 4596

  7. Honda M, Kuno S, Sonehara S, Fujimoto K, Suzuki K, Nakagawa Y, Tomishige K (2011) ChemCatChem 3:365

    Article  CAS  Google Scholar 

  8. Vivier L, Duprez D (2010) ChemSusChem 3:654

    Article  CAS  Google Scholar 

  9. Tamura M, Wakasugi H, Shimizu K, Satsuma A (2011) Chem Eur J 17:11428

    Article  CAS  Google Scholar 

  10. Firouzabadi H, Iranpoor N, Ghaderi A, Ghavami M (2012) Tetrahedron Lett 53:5515

    Article  CAS  Google Scholar 

  11. Tamura M, Shimizu K, Satsuma A (2012) Chem Lett 41:1397

    Article  CAS  Google Scholar 

  12. Tamura M, Tonomura T, Shimizu K, Satsuma A (2012) Green Chem 14:984

    Article  CAS  Google Scholar 

  13. Tamura M, Tonomura T, Shimizu K, Satsuma A (2012) Green Chem 14:717

    Article  CAS  Google Scholar 

  14. Tamura M, Tonomura T, Shimizu K, Satsuma A (2012) Appl Catal A 417–418:6

    Article  Google Scholar 

  15. Tamura M, Satsuma A, Shimizu K (2013) Catal Sci Technol 3:1386

    Article  CAS  Google Scholar 

  16. Tamura M, Noro K, Honda M, Nakagawa Y, Tomishige K (2013) Green Chem 15:1567

    Article  CAS  Google Scholar 

  17. Skorodumova NV, Baudin M, Hermansson K (2004) Phys Rev B 69:75401

    Article  Google Scholar 

  18. Herschend B, Baudin M, Hermansson K (2005) Surf Sci 599:173

    Article  CAS  Google Scholar 

  19. Herschend B, Baudin M, Hermansson K (2006) Chem Phys 328:345

    Article  CAS  Google Scholar 

  20. Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576:217

    Article  CAS  Google Scholar 

  21. Nolan M, Parker SC, Watson GW (2005) Surf Sci 595:223

    Article  CAS  Google Scholar 

  22. Yang Z, Yu X, Lu Z, Li S, Hermansson K (2009) Phys Lett A 373:2786

    Article  CAS  Google Scholar 

  23. Chen H-T, Choi YM, Liu M, Lin MC (2007) ChemPhysChem 8:849

    Article  CAS  Google Scholar 

  24. Molinari M, Parker SC, Sayle DC, Islam MS (2012) J Phys Chem C 116:7073

    Article  CAS  Google Scholar 

  25. Watkins MB, Foster AS, Shluger AL (2007) J Phys Chem C 111:15337

    Article  CAS  Google Scholar 

  26. Fronzi M, Piccinin S, Delley B, Traversa E, Stampfl C (2009) Phys Chem Chem Phys 11:9188

    Article  CAS  Google Scholar 

  27. Paier J, Penschke C, Sauer J (2013) Chem Rev 113:3949

    Article  CAS  Google Scholar 

  28. Vicario G, Balducci G, Fabris S, de Gironcoli S, Baroni S (2006) J Phys Chem B 110:19380

    Article  CAS  Google Scholar 

  29. Chen H-T, Chang J-G, Chen H-L, Ju S-P (2009) J Comput Chem 30:2433

    Article  CAS  Google Scholar 

  30. Cheng Z, Sherman BJ, Lo CS (2013) J Chem Phys 138:14702

    Article  Google Scholar 

  31. Yang Z, Woo TK, Hermansson K (2004) Chem Phys Lett 396:384

    Article  CAS  Google Scholar 

  32. Müller C, Freysoldt C, Baudin M, Hermansson K (2005) Chem Phys 318:180

    Article  Google Scholar 

  33. Alam MK, Ahmed F, Nakamura K, Suzuki A, Sahnoun R, Tsuboi H, Koyama M, Hatakeyama N, Endou A, Takaba H, Carpio CAD, Kubo M, Miyamoto A (2009) J Phys Chem C 113:7723

    Article  CAS  Google Scholar 

  34. Huang M, Fabris S (2008) J Phys Chem C 112:8643

    Article  CAS  Google Scholar 

  35. Chen F, Liu D, Zhang J, Hu P, Gong X-Q, Lu G (2012) Phys Chem Chem Phys 14:16573

    Article  CAS  Google Scholar 

  36. Yang Z, Woo TK, Hermansson K (2006) Surf Sci 600:4953

    Article  CAS  Google Scholar 

  37. Nolan M, Parker SC, Watson GW (2006) J Phys Chem B 110:2256

    Article  CAS  Google Scholar 

  38. Hu Z, Metiu H (2012) J Phys Chem C 116:6664

    Article  CAS  Google Scholar 

  39. Kumar S, Schelling PK (2006) J Chem Phys 125:204704

    Article  Google Scholar 

  40. Knapp D, Ziegler T (2008) J Phys Chem C 112:17311

    Article  CAS  Google Scholar 

  41. Beste A, Mullins DR, Overbury SH, Harrison RJ (2008) Surf Sci 602:162

    Article  CAS  Google Scholar 

  42. Mei D, Deskins NA, Dupuis M, Ge Q (2007) J Phys Chem C 111:10514

    Article  CAS  Google Scholar 

  43. Mei D, Deskins NA, Dupuis M, Ge Q (2008) J Phys Chem C 112:4257

    Article  CAS  Google Scholar 

  44. Mei D, Deskins NA, Dupuis M (2007) Surf Sci 601:4993

    Article  CAS  Google Scholar 

  45. Teng B, Jiang S, Yang Z, Luo M, Lan Y (2010) Surf Sci 604:68

    Article  CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  47. Cococcioni M, Gironcoli SD (2005) Phys Rev B 71:35105

    Article  Google Scholar 

  48. Vanderbilt D (1990) Phys Rev B 41:R7892

    Article  Google Scholar 

  49. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  50. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616

    Article  CAS  Google Scholar 

  51. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, Gironcoli SD, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys 21:395502

    Google Scholar 

  52. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford Science, Oxford

    Google Scholar 

  53. Herman G (1999) Phys Rev B 59:14899

    Article  CAS  Google Scholar 

  54. Nörenberg H, Harding JH (2001) Surf Sci 477:17

    Article  Google Scholar 

  55. Conesa JC (1995) Surf Sci 339:337

    Article  CAS  Google Scholar 

  56. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoichi Sawabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawabe, K., Yoshikawa, Y. & Satsuma, A. Density-Functional Theoretical Study on the Role of Lewis and Brønsted Acid Sites on CeO2(110) Surfaces for Nitrile Hydration. Top Catal 57, 1094–1102 (2014). https://doi.org/10.1007/s11244-014-0274-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0274-8

Keywords

Navigation