Skip to main content
Log in

New Concepts in Solid Acid Catalysis: Some Opportunities Offered by Dispersed Copper Oxide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Copper oxide supported on silica by the Chemisorption–Hydrolysis technique shows a moderate Lewis acidic character due to coordinative unsaturation of the finely dispersed supported metallic phase. Comparison of this material with a conventional acidic catalyst, namely SiO2–Al2O3, puts in light the advantages of this kind of acidic material in three different reactions. Thus, the use of CuO/SiO2 boosts selectivity toward glucose formation in cellulose deconstruction reactions while β-alkoxyalcohol are formed with 100 % regioselectivity in epoxide ring opening ones. Moreover, preliminary tests on Friedel Crafts acylation of anisole with acetic anhydride show that only the catalyst containing finely dispersed CuO is able to promote this reaction due to both Lewis acidic properties and easy desorption of the acylating agent from the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Corma A, Garcia H (2003) Chem Rev 103:4307

    Article  CAS  Google Scholar 

  2. Busca G (2007) Chem Rev 107:5266

    Article  Google Scholar 

  3. Perego C, Bianchi D (2010) Chem Eng J 161:314

    Article  CAS  Google Scholar 

  4. Yabushita M, Kobayashi H, Fukuoka A (2013) Appl Catal B Environ 145(2014):1

    Google Scholar 

  5. Pearson RG (1963) J Am Chem Soc 85(22):3533

    Article  CAS  Google Scholar 

  6. Tanabe K, Sumiyoshi T, Shibata K, Kiyoura T, Kitagawa J (1974) Bull Chem Soc Jpn 47(5):1064

    Article  CAS  Google Scholar 

  7. Shen Y (2012) RSC Adv 2:5957

    Article  CAS  Google Scholar 

  8. Walling C (1950) J Am Chem Soc 72:1164

    Article  CAS  Google Scholar 

  9. Liu D, Yuan P, Liu H, Cai J, Qin Z, Tan D, Zhou Q, He H, Zhu J (2011) Appl Clay Sci 52:358

    Article  CAS  Google Scholar 

  10. Farneth WE, Gorte RJ (1995) Chem Rev 95:615

    Article  CAS  Google Scholar 

  11. Guisnet M, Gilson J-P (2002) Introduction to zeolite science and technology. In: Guisnet M and Gilson J-P (eds) Zeolites for cleaner technologies, catalytic science series, vol 3. Imperial College Press, London, p 9

  12. Onda A, Ochi T, Yanagisawa K (2008) Green Chem 10:1033

    Article  CAS  Google Scholar 

  13. Serrano DP, Garcìa RA, Vicente G, Linares M, Prochàzkovà D, Čejka J (2011) J Catal 279:366

    Article  CAS  Google Scholar 

  14. Sazama P, Sobalik Z, Dedecek J, Jakubec I, Parvulescu V, Bastl Z, Rathousky J, Jirglova H (2013) Angew Chem Int Ed 52:2038

    Article  CAS  Google Scholar 

  15. Hensen EJM, Poduval DG, Degirmenci V, Ligthart DAJM, Chen W, Maugé F, Rigutto MS, van Veen JAR (2012) J Phys Chem C 116:21416

    Article  CAS  Google Scholar 

  16. Boronat M, Concepcion P, Corma A, Renz M (2007) Catal Today 121(1–2):39

    Article  CAS  Google Scholar 

  17. Yang G, Pidko EA, Hensen EJM (2013) J Phys Chem C 117:3976

    Article  CAS  Google Scholar 

  18. Campanati M, Vaccari A (2001) Solid-acid catalysts-general. In: Sheldon RA and van Bekkum H (eds) Fine chemicals through heterogeneous catalysis. Wiley, Weinheim, pp 61–91

  19. Ward JW (1967) J Catal 9(3):225

    Article  CAS  Google Scholar 

  20. Ward JW (1968) J Catal 11(3):251

    Article  CAS  Google Scholar 

  21. Van Rhijn WM, De Vos D, Sels BF, Bossaert WD, Jacobs PA (1998) Chem Commun 3:317

    Article  Google Scholar 

  22. Wu Z, Ge S, Ren C, Zhang M, Yip A, Xu C (2012) Green Chem 14(12):3336

    Article  CAS  Google Scholar 

  23. Macht J, Iglesia E (2008) PCCP 10:5331–5343

    Article  CAS  Google Scholar 

  24. He J, Li Q-J, Fan Y-N (2013) J Solid State Chem 202:121

    Article  CAS  Google Scholar 

  25. Zaccheria F, Scotti N, Marelli M, Psaro R, Ravasio N (2013) Dalton Trans 42(5):1319

    Article  CAS  Google Scholar 

  26. Trombetta M, Busca G, Rossini S, Piccoli V, Cornaro U, Guercio A, Catani R, Willey R (1998) J Catal 179:581

    Article  CAS  Google Scholar 

  27. Matsumura Y, Keiji H, Satohiro Y (1991) J Mol Catal 69:L19

    Article  CAS  Google Scholar 

  28. Busca G (1999) Phys Chem Chem Phys 1:723

    Article  CAS  Google Scholar 

  29. Emeis CA (1993) J Catal 141:347

    Article  CAS  Google Scholar 

  30. Mariani M, Zaccheria F, Psaro R, Ravasio N (2014) Catal Commun 44:19

  31. Huang Y-B, Fu Y (2013) Green Chem 15:1095

    Article  CAS  Google Scholar 

  32. Weingarten R, Kim YT, Tompsett GA, Fernández A, Sung Han K, Hagaman EW, Conner WC Jr, Dumesic JA, Huber GW (2013) J Catal 304:123

    Article  CAS  Google Scholar 

  33. Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N (2011) Appl Catal B Environ 105:171

    Article  CAS  Google Scholar 

  34. Shimidzu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Green Chem 11:1627–1632

    Article  Google Scholar 

  35. Ruppert AM, Weinberg K, Palkovits R (2012) Angew Chem Int Ed 51(2012):2564 (and ref therein)

    Article  CAS  Google Scholar 

  36. Tajvidi K, Pupovac K, Kukrek M, Palkovits R (2012) ChemSusChem 5:2139

    Article  CAS  Google Scholar 

  37. Kobayashi H, Komanoya T, Guha SK, Hara K, Fukuoka A (2011) Appl Catal A Gener 13:409

    Google Scholar 

  38. Zaccheria F, Santoro F, Psaro R, Ravasio N (2011) Green Chem 13(3):545

    Article  CAS  Google Scholar 

  39. Liu Y-H, Liu Q-S, Zhang Z-H (2008) J Mol Catal A Chem 296:42

    Article  CAS  Google Scholar 

  40. Robinson MWC, Buckle R, Mabbett I, Grant GM, Graham AE (2007) Tetrahedron Lett 48:4723

    Article  CAS  Google Scholar 

  41. Jiang D, Urakawa A, Yulikov M, Mallat T, Jeschkeand G, Baiker A (2009) Chem Eur J 15:12255

    Article  CAS  Google Scholar 

  42. Dhakshinamoorthy A, Alvaro M, Concepciòn M, Fornés V, Garcia H (2012) Chem Commun 48:5443

    Article  CAS  Google Scholar 

  43. Saikia L, Satyarthi JK, Srinivas D, Ratnasamy P (2007) J Catal 252:148

    Article  CAS  Google Scholar 

  44. Sartori G, Maggi R (2011) ChemRev PR111:181

    Google Scholar 

  45. Spagnol M, Gilbert L, Benazzi E and Marcilly C  (1996) Patent to Rhodia WO 96/35655

  46. Gervasini A, Manzoli M, Martra G, Ponti A, Ravasio N, Sordelli L, Zaccheria F (2006) J Phys Chem B110:7851

    Article  Google Scholar 

  47. Aguirre A, Bonivardi AL, Matkovic SR, Briand LE, Collins SE (2011) Topics Catal 54:229

    Article  CAS  Google Scholar 

  48. Young RP (1969) Can J Chem 47:2237

    Article  CAS  Google Scholar 

  49. Puttock SJ, Rochester CH (1986) J Chem Soc Faraday Trans 1(82):3013

    Article  Google Scholar 

  50. Derouane EG, Crehan G, Dillon CJ, Bethell D, He H, Derouane-Abd Hamid SB (2000) J Catal 194:410

    Article  CAS  Google Scholar 

  51. Rohan D, Canaff C, Fromentin E, Guisnet M (1998) J Catal 177:296

    Article  CAS  Google Scholar 

  52. Breda A, Signoretto M, Ghedini E, Pinna F, Cruciani G (2006) Appl Catal A Gener 308:216

    Article  CAS  Google Scholar 

  53. Bejblova M, Prochazkova D, Cejka J (2009) ChemSusChem 2:486

    Article  CAS  Google Scholar 

  54. Brunelle JP (1978) Pure Appl Chem 50:1211

    Article  CAS  Google Scholar 

  55. Schreier M, Feltes TE, Schaal MT, Regalbuto JR (2010) J Colloid Interface Sci 348:571

    Article  CAS  Google Scholar 

  56. Park JC, Lee HJ, Bang JU and Song H (2009) Chem Commun. doi:10.1039/b916837k

  57. Thomas JM, Raja R, Gai PL, Grönbeck H, Hernández-Garrido JC (2010) ChemCatChem 2:402

    Article  CAS  Google Scholar 

  58. Mori K, Hara T, Mizugali T, Ebitani K, Kaneda K (2004) J Am Chem Soc 126:10657

    Article  CAS  Google Scholar 

  59. Boccuzzi F, Chiorino A, Martra G, Gargano M, Ravasio N, Carrozzini B (1997) J Catal 165(2):129

    Article  CAS  Google Scholar 

  60. Boccuzzi F, Coluccia S, Martra G, Ravasio N (1999) J Catal 184(2):316

    Article  CAS  Google Scholar 

  61. Bennici S, Gervasini A, Ravasio N, Zaccheria F (2003) J Phys Chem 107:516

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the Italian Ministry of University and Research through the project FIRB “ItalNanoNet” (Rete Nazionale di Ricerca sulle Nanoscienze; prot. No. RBPR05JH2P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoletta Ravasio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaccheria, F., Shaikh, N.I., Scotti, N. et al. New Concepts in Solid Acid Catalysis: Some Opportunities Offered by Dispersed Copper Oxide. Top Catal 57, 1085–1093 (2014). https://doi.org/10.1007/s11244-014-0273-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0273-9

Keywords

Navigation