Skip to main content
Log in

Direct Introduction of OH Group to sp2-Carbon on Platinum-Loaded Titanium Oxide Photocatalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Photocatalytic oxidation of various organic compounds by using molecular oxygen has been broadly investigated as a valuable synthetic route, but the application has been still limited because the active oxygen species from the molecular oxygen are usually difficult to be controlled. In this short review, we describe two kinds of photocatalytic oxygenation with H2O molecule as a source of OH group; i.e., photocatalytic hydroxylation of aromatic ring and photocatalytic hydration of alkene, on Pt/TiO2 photocatalyst. In both reactions, a photoformed active oxygen species attacks to the sp2-carbon to form a reaction intermediate. In the aromatic ring hydroxylation, the elimination of the H atom from the intermediate proceeds while the conjugate double bond of the aromatic ring maintains. In the alkene hydration, the addition of the H radical to the intermediate results in forming an alcohols molecule with the saturation of the double bond. In the former case, the electrophilic property of the active oxygen species predominantly determines the orientation of the OH group in the produced phenols. On the other hand, in the latter case, the thermodynamic stability of the intermediate radical species leads the active oxygen species preferentially to the terminal sp2-carbon, which makes it possible to provide the unique regioselectivity of alcohol according to the anti-Markovnikov rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 2
Scheme 8
Fig. 3
Scheme 9
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fox MA, Dulay M (1993) Chem Rev 93:341

    Article  CAS  Google Scholar 

  2. Maldotti A, Molinari A, Amadelli R (2002) Chem Rev 102:3811

    Article  CAS  Google Scholar 

  3. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33

    Article  CAS  Google Scholar 

  4. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L (2007) Chem Commun 43:3425

    Article  Google Scholar 

  5. Shiraishi Y, Hirai T (2008) J Photochem Photobiol C 9:157

    Article  CAS  Google Scholar 

  6. Kisch H (2013) Angew Chem Int Ed 52:812

    Article  CAS  Google Scholar 

  7. Almquist CB, Biswas P (2001) Appl Catal A 214:259

    Article  CAS  Google Scholar 

  8. Du P, Moulijn JA, Mul G (2006) J Catal 238:342

    Article  CAS  Google Scholar 

  9. Almeida AR, Moulijn JA, Mul G (2011) J Phys Chem C 115:1330

    Article  CAS  Google Scholar 

  10. Molinari R, Caruso A, Poerio T (2009) Catal Today 144:81

    Article  CAS  Google Scholar 

  11. Shimizu K, Kaneko T, Fujishima T, Kodama T, Yoshida H, Kitayama Y (2002) Appl Catal A 225:185

    Article  CAS  Google Scholar 

  12. Park H, Choi W (2005) Catal Today 101:291

    Article  CAS  Google Scholar 

  13. Palmisano G, Addamo M, Augugliaro V, Caronna T, Paola AD, López EG, Loddo V, Marcì G, Palmisano L, Schiavello M (2007) Catal Today 122:118

    Article  CAS  Google Scholar 

  14. Pillai UR, Sahle-Demessie E (2002) J Catal 211:434

    Article  CAS  Google Scholar 

  15. Arsac F, Bianchi D, Chovelon JM, Ferronato C, Herrmann JM (2006) J Phys Chem A 110:4202

    Article  CAS  Google Scholar 

  16. Arsac F, Bianchi D, Chovelon JM, Ferronato C, Herrmann JM (2006) J Phys Chem A 110:4213

    Article  CAS  Google Scholar 

  17. Tsukamoto D, Ikeda M, Shiraishi Y, Hara T, Ichikuni N, Tanaka S, Hirai T (2011) Chem Eur J 17:9816

    Article  CAS  Google Scholar 

  18. Furukawa S, Shishido T, Teramura K, Tanaka T (2012) ACS Catal 2:175

    Article  CAS  Google Scholar 

  19. Higashimoto S, Okada K, Azuma M, Ohue H, Teraia T, Sakata Y (2012) RSC Adv 2:669

    Article  CAS  Google Scholar 

  20. Yoshida H, Yuzawa H, Aoki M, Otake K, Hattori T, Itoh H (2008) Chem Commun 44:4634

    Article  Google Scholar 

  21. Yuzawa H, Aoki M, Otake K, Hattori T, Itoh H, Yoshida H (2012) J Phys Chem C 116:25376

    Article  CAS  Google Scholar 

  22. Yuzawa H, Yoneyama S, Yamamoto A, Aoki M, Otake K, Itoh H, Yoshida H (2013) Catal Sci Technol 3:1739

    Article  CAS  Google Scholar 

  23. Schmidt RJ (2005) Appl Catal A 280:89

    Article  CAS  Google Scholar 

  24. Izumi I, Dunn WW, Willbourn KO, Fan F-RF, Bard AJ (1980) J Phys Chem 84:3207

    Article  CAS  Google Scholar 

  25. Fujihira M, Satoh Y, Osa T (1981) Nature 293:206

    Article  CAS  Google Scholar 

  26. Shimamura Y, Misawa H, Oguchi T, Nanno T, Sakuragi H, Tokumaru K (1983) Chem Lett 12:1691

  27. Teratani S, Takagi Y, Takahashi M, Noda H, Ikuo A, Tanaka K (1984) Nippon Kagakukaishi 13:283

  28. Takagi K, Fujioka T, Sawaki Y, Iwamura H (1985) Chem Lett 14:913

    Article  Google Scholar 

  29. Kato T, Butsugan Y, Maekawa E, Fujishima A (1989) Denki Kagaku 57:1155

    CAS  Google Scholar 

  30. Kato T, Butsugan Y, Maekawa E, Fujishima A (1989) Nippon Kagakukaishi 18:784

  31. Fujihira M, Satoh Y, Osa T (1981) Chem Lett 10:1053

    Article  Google Scholar 

  32. Fujihira M, Satoh Y, Osa T (1981) J Electroanal Chem 126:277

    Article  CAS  Google Scholar 

  33. Fujihira M, Satoh Y, Osa T (1982) Bull Chem Soc Jpn 55:666

    Article  CAS  Google Scholar 

  34. Matthews RW (1984) J Chem Soc Faraday Trans 1 80:457

    Article  CAS  Google Scholar 

  35. Tomita O, Abe R, Ohtani B (2011) Chem Lett 40:1405

    Article  CAS  Google Scholar 

  36. Shiraishi Y, Saito N, Hirai T (2005) J Am Chem Soc 127:12820

    Article  CAS  Google Scholar 

  37. Yuzawa H, Mori T, Itoh H, Yoshida H (2012) J Phys Chem 116:4126

    CAS  Google Scholar 

  38. Olah G (1971) Acc Chem Res 4:240

    Article  CAS  Google Scholar 

  39. Yuzawa H, Aoki M, Itoh H, Yoshida H (2011) J Phys Chem Lett 2:1868

    Article  CAS  Google Scholar 

  40. Stewart JJP (2013) J Mol Model 19:1

    Article  CAS  Google Scholar 

  41. Stewart JJP (2012) MOPAC2012, stewart computational chemistry, colorado springs, CO. http://openmopac.net/. Accessed 6 Mar 2014

  42. Nelson DJ, Brammer C, Li R (2009) Tetrahedron Lett 50:6454

    Article  CAS  Google Scholar 

  43. Marcì G, García-López EI, Palmisano L (2012) Appl Catal A 421–422:70

    Article  Google Scholar 

  44. Shan X, Cheng Z, Li Y (2011) J Chem Eng Data 56:4310

    Article  CAS  Google Scholar 

  45. Talwalkar S, Kumbhar P, Mahajani S (2006) Ind Eng Chem Res 45:8024

    Article  CAS  Google Scholar 

  46. Beller M, Seayad J, Tillack A, Jiao H (2004) Angew Chem Int Ed 43:3368

    Article  CAS  Google Scholar 

  47. Dong G, Teo P, Wickens ZK, Grubbs RH (2011) Science 333:1609

    Article  CAS  Google Scholar 

  48. Teramura K, Tanaka T, Hosokawa T, Ohuchi T, Kani M, Funabiki T (2004) Catal Today 96:205

    Article  CAS  Google Scholar 

  49. Shiraishi Y, Teshima Y, Hirai T (2005) Chem Commun 41:4569

    Article  Google Scholar 

  50. Horiuchi J, Okamoto G (1936) Sci Pap Inst Phys Chem Res 28:231

    CAS  Google Scholar 

  51. Imanishi A, Okamura T, Ohashi N, Nakamura R, Nakato Y (2007) J Am Chem Soc 129:11569

    Article  CAS  Google Scholar 

  52. Wang L, Tang A (2011) Int J Kinet 43:62

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuzawa, H., Yoshida, H. Direct Introduction of OH Group to sp2-Carbon on Platinum-Loaded Titanium Oxide Photocatalyst. Top Catal 57, 984–994 (2014). https://doi.org/10.1007/s11244-014-0261-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0261-0

Keywords

Navigation