Skip to main content
Log in

In Situ Time-Resolved XAFS of Transitional States of Pt/C Cathode Electrocatalyst in an MEA During PEFC Loading with Transient Voltages

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The transitional states of a Pt/C cathode electrocatalyst in the membrane electrode assembly of a polymer electrolyte fuel cell during loading with transient voltages were systematically analyzed by in situ time-resolved X-ray absorption fine structure with time resolution of 100 ms. The results suggest that the local coordination of the Pt cathode electrocatalyst was unaffected by the transient voltages during both rapid and gradual loading over 0–30 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pukrushpan JT, Stefanopoulou AG, Peng H (2004) IEEE Contr Syst Mag 24:30

    Article  Google Scholar 

  2. Papra M, Büchi FN, Kötz R (2010) Fuel Cells 10:873

    Article  CAS  Google Scholar 

  3. Hamelin J, Agbossou K, Laperrière A, Laurencelle F, Bose TK (2001) Int J Hydrogen Energ 26:625

    Article  CAS  Google Scholar 

  4. Amphlett JC, de Oliveria EH, Mann RF, Roberge PR, Rodrigues A, Salvador JP (1997) J Power Sources 65:173

    Article  CAS  Google Scholar 

  5. Emonts B, Bøglid Hansen J, Schmidt H, Grude T, Höhlein B, Peters R, Tschauder A (2000) J Power Sources 86:228

    Article  CAS  Google Scholar 

  6. Kim S, Shimpalee S, van Zee JW (2004) J Power Sources 135:110

    Article  CAS  Google Scholar 

  7. Guilin H, Jianren F (2007) J Power Sources 165:171

    Article  Google Scholar 

  8. Amphlett JC, Mann RF, Peppley BA, Roberge PR, Rodrigues A (1996) J Power Sources 61:183

    Article  CAS  Google Scholar 

  9. Wöhr M, Bolwin K, Schnurnberger W, Fischer M, Neubrand W, Eigenberger G (1998) Int J Hydrogen Energ 23:213

    Article  Google Scholar 

  10. van Bussel HPLH, Köne FGH, Mallant RKAM (1998) J Power Sources 71:218

    Article  Google Scholar 

  11. Um S, Wang CY, Chen KS (2000) J Electrochem Soc 147:4485

    Article  CAS  Google Scholar 

  12. Yerramalla S, Davari A, Feliachi A, Biswas T (2003) J Power Sources 124:104

    Article  CAS  Google Scholar 

  13. Pathapati PR, Xue X, Tang J (2005) Renew Energ 30:1

    Article  CAS  Google Scholar 

  14. Friede W, Raël S, Devat B (2004) IEEE T Power Electr 19:1234

    Article  Google Scholar 

  15. Zhang S, Yuan X, Wang H, Mérida W, Zhu H, Shen J, Wu S, Zhang J (2009) Int J Hydrogen Energ 34:388

    Article  CAS  Google Scholar 

  16. Russell AE, Rose A (2004) Chem Rev 104:4613

    Article  CAS  Google Scholar 

  17. Tada M, Murata S, Asakoka T, Hiroshima K, Okumura K, Tanida H, Uruga T, Nakanishi H, Matsumoto S, Inada Y, Nomura M, Iwasawa Y (2007) Angew Chem Int Ed 46:4310

    Article  CAS  Google Scholar 

  18. Friebel D, Miller DJ, O’Grady CP, Anniyev T, Barger J, Bergmann U, Ogasawara H, Wikfeldt KT, Pettersson LGM, Nilsson A (2011) Phys Chem Chem Phys 13:262

    Article  CAS  Google Scholar 

  19. Imai H, Matsumoto M, Miyazaki T, Kato K, Tanida H, Uruga T (2011) Chem Commun 47:3538

    Article  CAS  Google Scholar 

  20. Imai H, Izumi K, Matsumoto M, Kubo Y, Kato K, Imai Y (2009) J Am Chem Soc 131:6293

    Article  CAS  Google Scholar 

  21. Ishiguro N, Saida T, Uruga T, Nagamatsu S, Sekizawa O, Nitta K, Yamamoto T, Ohkoshi S, Iwasawa Y, Yokoyama T, Tada M (2012) ACS Catal 2:1319

    Article  CAS  Google Scholar 

  22. Hashimasa Y, Numata T, Moriya K, Watanabe S (2002) JARI Res J 24:455

    Google Scholar 

  23. Nonaka T, Dohmae K, Araki T, Hayashi Y, Hirose Y, Uruga T, Yamazaki H, Mochizuki T, Tanida H, Goto S (2012) Rev Sci Instrum 83:083112

    Article  CAS  Google Scholar 

  24. Newville M, Ravel B, Haskel D, Rehr JJ, Stern EA, Yacoby Y (1995) Phys B 208–209:154

    Article  Google Scholar 

  25. Ravel B, Newville M (2005) J Synchrotron Radiat 12(4):537

    Article  CAS  Google Scholar 

  26. Moreno MS, Jorissen K, Rehr JJ (2007) Micron 38:1

    Article  CAS  Google Scholar 

  27. Ankudinov AL, Nesvizhskii AI, Rehr JJ (2003) Phys. Rev. B 67:115120

    Article  Google Scholar 

  28. Davey WP (1925) Phys Rev 25:736

    Article  Google Scholar 

  29. Muller O, Roy R (1968) J Less-Common Met 16:129

    Article  CAS  Google Scholar 

  30. Sekizawa O, Uruga T, Tada M, Nitta K, Kato K, Tanida H, Takeshita K, Takahashi S, Sano M, Aoyagi H, Watanabe A, Nariyama N, Ohashi H, Yumoto H, Koyama T, Senba Y, Takeuchi T, Furukawa Y, Ohata T, Matsushita T, Ishizawa Y, Kudo T, Kimura H, Yamazaki H, Tanaka T, Bizen T, Seike T, Goto S, Ohno H, Takata M, Kitamura H, Ishikawa T, Yokoyama T, Iwasawa Y (2013) J Phys: Conference Series 430:012020

    Google Scholar 

Download references

Acknowledgments

This work was supported by the New Energy and Industrial Technology Development Organization of the Ministry of Economy, Trade, and Industry, Japan. XAFS measurements were performed at SPring-8 (No. 2012A1013 (BL40XU) and No. 2012B7820 (BL36XU)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mizuki Tada.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kityakarn, S., Saida, T., Sode, A. et al. In Situ Time-Resolved XAFS of Transitional States of Pt/C Cathode Electrocatalyst in an MEA During PEFC Loading with Transient Voltages. Top Catal 57, 903–910 (2014). https://doi.org/10.1007/s11244-014-0250-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0250-3

Keywords

Navigation