Topics in Catalysis

, Volume 56, Issue 1–8, pp 333–338 | Cite as

Oscillatory CO Oxidation Over Pt/Al2O3 Catalysts Studied by In situ XAS and DRIFTS

  • Alexey Boubnov
  • Andreas Gänzler
  • Sabrina Conrad
  • Maria Casapu
  • Jan-Dierk Grunwaldt
Original Paper

Abstract

Fresh and mildly aged Pt/Al2O3 model diesel oxidation catalysts with small and large noble metal particle size have been studied during CO oxidation under lean burn reaction conditions to gain more insight into the structure and oscillatory reaction behaviour. The catalytic performance, CO adsorption characteristics using in situ DRIFTS and oxidation state using in situ XAS were correlated. Stable and pronounced oscillations only occurred over the catalyst with smaller particle sizes. Characteristic for this catalyst are low-coordinated surface Pt sites (more corner and edge atoms) which seem to become oxidized at elevated temperature as evidenced by in situ DRIFTS and in situ XAS. In situ XAS further uncovered that the oxidation of the Pt surface starts from the end of the catalyst bed and the oxidation state oscillates like the catalytic activity.

Keywords

Platinum CO oxidation Oscillations In situ DRIFTS In situ XAS Spatially resolved studies 

References

  1. 1.
    Ertl G, Norton PR, Rüstig J (1982) Phys Rev Lett 49(2):177–180CrossRefGoogle Scholar
  2. 2.
    Russell A, Epling WS (2011) Catal Rev 53(4):337–423CrossRefGoogle Scholar
  3. 3.
    Razon LF, Schmitz RA (1986) Catal Rev Sci Eng 28(1):89–164CrossRefGoogle Scholar
  4. 4.
    McClure SM, Goodman DW (2009) Chem Phys Lett 469(1–3):1–13CrossRefGoogle Scholar
  5. 5.
    Ertl G (2008) Angew Chem Int Ed 47(19):3524–3535CrossRefGoogle Scholar
  6. 6.
    Gracia FJ, Bollmann L, Wolf EE, Miller JT, Kropf AJ (2003) J Catal 220(2):382–391CrossRefGoogle Scholar
  7. 7.
    Alayon EMC, Singh J, Nachtegaal M, Harfouche M, van Bokhoven JA (2009) J Catal 263(2):228–238CrossRefGoogle Scholar
  8. 8.
    Campbell CT, Ertl G, Kuipers H, Segner J (1980) J Chem Phys 73(11):5862–5873CrossRefGoogle Scholar
  9. 9.
    Allian AD, Takanabe K, Fujdala KL, Hao X, Truex TJ, Cai J, Buda C, Neurock M, Iglesia E (2011) J Am Chem Soc 133(12):4498–4517CrossRefGoogle Scholar
  10. 10.
    Salomons S, Hayes RE, Votsmeier M, Drochner A, Vogel H, Malmberg S, Gieshoff J (2007) Appl Catal B 70(1–4):305–313Google Scholar
  11. 11.
    Singh J, Nachtegaal M, Alayon EMC, Stötzel J, van Bokhoven JA (2010) ChemCatChem 2(6):653–657CrossRefGoogle Scholar
  12. 12.
    Imbihl R, Ertl G (1995) Chem Rev 95(3):697–733CrossRefGoogle Scholar
  13. 13.
    Yeates RC, Turner JE, Gellman AJ, Somorjai GA (1985) Surf Sci 149(1):175–190CrossRefGoogle Scholar
  14. 14.
    Sales BC, Turner JE, Maple MB (1982) Surf Sci 114(2–3):381–394CrossRefGoogle Scholar
  15. 15.
    Gracia FJ, Miller JT, Kropf AJ, Wolf EE (2002) J Catal 209(2):341–354CrossRefGoogle Scholar
  16. 16.
    Lynch DT, Wanke SE (1984) J Catal 88(2):333–344CrossRefGoogle Scholar
  17. 17.
    Yang J, Tschamber V, Habermacher D, Garin F, Gilot P (2008) Appl Catal B 83(3–4):229–239Google Scholar
  18. 18.
    Singh J, van Bokhoven JA (2010) Catal Today 155(3–4):199–205CrossRefGoogle Scholar
  19. 19.
    Fanson PT, Delgass WN, Lauterbach J (2001) J Catal 204(1):35–52CrossRefGoogle Scholar
  20. 20.
    Carlsson PA, Zhdanov VP, Skoglundh M (2006) Phys Chem Chem Phys 8(23):2703–2706CrossRefGoogle Scholar
  21. 21.
    Marwaha B, Annamalai J, Luss D (2001) Chem Eng Sci 56(1):89–96CrossRefGoogle Scholar
  22. 22.
    D’Netto GA, Brown JR, Schmitz RA (1984) Chem React Eng 87:247–254Google Scholar
  23. 23.
    Frahm R, Nachtegaal M, Stötzel J, Harfouche M, van Bokhoven JA, Grunwaldt JD (2010) AIP Conf Proc 1234(1):251–255CrossRefGoogle Scholar
  24. 24.
    Grunwaldt JD, Caravati M, Hannemann S, Baiker A (2004) Phys Chem Chem Phys 6:11CrossRefGoogle Scholar
  25. 25.
    Mavrikakis M, Stoltze P, Nørskov JK (2000) Catal Lett 64(2):101–106CrossRefGoogle Scholar
  26. 26.
    Van Hardeveld R, Hartog F (1969) Surf Sci 15(2):189–230CrossRefGoogle Scholar
  27. 27.
    Gracia FJ, Wolf EE (2004) Chem Eng Sci 59(22–23):4723–4729Google Scholar
  28. 28.
    Altman EI, Gorte RJ (1986) Surf Sci 172(1):71–80CrossRefGoogle Scholar
  29. 29.
    Davydov A (2003) Molecular spectroscopy of oxide catalyst surfaces. Wiley, New York, pp 559–641CrossRefGoogle Scholar
  30. 30.
    Sheppard N, Nguyen TT (1987) The vibrational spectra of carbon monoxide chemisorbed in the surfaces of metal catalysts: a suggested scheme of interpretation. In: Clark RGH, Hester RE (eds) Advances in infrared and Raman spectroscopy, vol 5. Heyden, London, pp 67–148Google Scholar
  31. 31.
    Brandt RK, Hughes MR, Bourget LP, Truszkowska K, Greenler RG (1993) Surf Sci 286(1–2):15–25CrossRefGoogle Scholar
  32. 32.
    Kappers M, Maas J (1991) Catal Lett 10(5):365–373CrossRefGoogle Scholar
  33. 33.
    Yoshida H, Nonoyama S, Yazawa Y, Hattori T (2005) Phys Scripta T115:813CrossRefGoogle Scholar
  34. 34.
    Stötzel J, Frahm R, Kimmerle B, Nachtegaal M, Grunwaldt J-D (2011) J Phys Chem C 116(1):599–609CrossRefGoogle Scholar
  35. 35.
    Kimmerle B, Baiker A, Grunwaldt J-D (2010) Phys Chem Chem Phys 12:10CrossRefGoogle Scholar
  36. 36.
    Deutschmann O (ed) (2012) Modeling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system. Wiley, WeinheimGoogle Scholar
  37. 37.
    Grunwaldt J-D, Schroer CG (2010) Chem Soc Rev 39(12):4741–4753CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alexey Boubnov
    • 1
  • Andreas Gänzler
    • 2
  • Sabrina Conrad
    • 2
  • Maria Casapu
    • 2
  • Jan-Dierk Grunwaldt
    • 1
  1. 1.Institute for Chemical Technology and Polymer Chemistry (ITCP) and Institute for Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations