Skip to main content
Log in

Influence of Hydrothermal Ageing on NH3-SCR Over Fe-BEA—Inhibition of NH3-SCR by Ammonia

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The decay in ammonia adsorption capacity and the amount of active iron sites are important to consider in order to understand the deactivation processes of Fe-BEA for NH3-SCR catalyst applications. NH3 and NO storage capacity experiments together with kinetic modeling have been used to evaluate ammonia inhibition during NH3-SCR before and after hydrothermal treatment of H-BEA and Fe-BEA. The kinetic model shows that at least four types of acid sites for H-BEA and one additional site for Fe-BEA are required to predict the NH3 desorption well. NH3-TPD experiments together with simulations show that the strongest adsorption sites are the sites that are most affected by the hydrothermal treatment. For H-BEA a clear correlation between the ammonia storage capacity and the improved NOX conversion after NH3 cut-off during NH3-SCR is observed. However, for Fe-BEA an inhibiting effect of ammonia after NH3 cut-off is seen but no significant difference (i.e. increased NOX conversion time) between fresh and aged samples can be observed, indicating that the inhibiting effect is unaffected by the hydrothermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brandenberger S, Krocher O, Tissler A, Althoff R (2008) Catal Rev Sci Eng 50:492–531

    Article  CAS  Google Scholar 

  2. Kröcher O, Devadas M, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L (2006) Appl Catal B 66:208–216

    Article  Google Scholar 

  3. Chen H-Y, Sachtler WMH (1998) Catal Today 42:73–83

    Article  CAS  Google Scholar 

  4. Krishna K, Makkee M (2006) Catal Today 114:23–30

    Article  CAS  Google Scholar 

  5. Shwan S, Nedyalkova R, Jansson J, Korsgren J, Olsson L, Skoglundh M (2012) Ind Eng Chem Res 51:12762–12772

    Article  CAS  Google Scholar 

  6. Brandenberger S, Kröcher O, Wokaun A, Tissler A, Althoff R (2009) J Catal 268:297–306

    Article  CAS  Google Scholar 

  7. Brandenberger S, Kröcher O, Casapu M, Tissler A, Althoff R (2011) Appl Catal B 101:649–659

    Article  CAS  Google Scholar 

  8. Brandenberger S, Kröcher O, Tissler A, Althoff R (2010) Appl Catal B 95:348–357

    Article  CAS  Google Scholar 

  9. Brandenberger S, Kröcher O, Tissler A, Althoff R (2010) Appl Catal A 373:168–175

    Article  CAS  Google Scholar 

  10. Wallin M, Karlsson CJ, Skoglundh M, Palmqvist A (2003) J Catal 218:354–364

    Article  CAS  Google Scholar 

  11. Nova I, Colombo M, Tronconi E, Schmeisser V, Weibel M (2011) SAE Int J Engines 4:1822–1838

    Google Scholar 

  12. Shwan S, Jansson J, Korsgren J, Olsson L, Skoglundh M (2012) Catal Today 197:24–37

    Article  CAS  Google Scholar 

  13. AVL BOOST (2011) Aftertreatment manual, AVL. http://www.avl.com

  14. Olsson L, Sjövall H, Blint RJ (2008) Appl Catal B 81:203–217

    Article  CAS  Google Scholar 

  15. Wilken N, Wijayanti K, Kamasamudram K, Currier NW, Vedaiyan R, Yezerets A, Olsson L (2012) Appl Catal B Environ 111–112:58–66

    Google Scholar 

  16. Busco C, Barbaglia A, Broyer M, Bolis V, Foddanu GM, Ugliengo P (2004) Thermochim Acta 418:3–9

    Article  CAS  Google Scholar 

  17. Sjövall H, Blint RJ, Olsson L (2009) Appl Catal B 92:138–153

    Article  Google Scholar 

  18. Sjövall H, Blint RJ, Olsson L (2009) J Phys Chem C 113:1393–1405

    Article  Google Scholar 

  19. Colombo M, Koltsakis G, Nova I, Tronconi E (2011) Catal. Today

  20. Pinto RR, Borges P, Lemos M, Lemos F, Vedrine JC, Derouane EG, Ribeiro FR (2005) Appl Catal A Gen 284:39–46

    Article  CAS  Google Scholar 

  21. Hoj M, Beier MJ, Grunwaldt JD, Dahl S (2009) Appl Catal B Environ 93:166–176

    Article  Google Scholar 

  22. AVL (2011) DoE and Optimization manual. AVL. http://www.avl.com

  23. Devadas M, Kröcher O, Elsener M, Wokaun A, Mitrikas G, Söger N, Pfeifer M, Demel Y, Mussmann L (2007) Catal Today 119:137–144

    Article  CAS  Google Scholar 

  24. Delahay G, Valade D, Guzman-Vargas A, Coq B (2005) Appl Catal B Environ 55:149–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been performed within the FFI program (Proj. No. 32900-1), which is financially supported by the Swedish Energy Agency and partly within the Competence Centre for Catalysis, which is hosted by Chalmers University of Technology and financially supported by the Swedish Energy Agency and the member companies AB Volvo, Volvo Car Corporation AB, Scania CV AB, Haldor Topsøe A/S, and ECAPS AB. Financial support from Knut and Alice Wallenberg Foundation, Dnr KAW 2005.0055, is gratefully acknowledged. The authors would also like to thank Volvo Group Trucks Technology and Miroslawa Milh for help with the hydrothermal treatment of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soran Shwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shwan, S., Nedyalkova, R., Jansson, J. et al. Influence of Hydrothermal Ageing on NH3-SCR Over Fe-BEA—Inhibition of NH3-SCR by Ammonia. Top Catal 56, 80–88 (2013). https://doi.org/10.1007/s11244-013-9933-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-9933-4

Keywords

Navigation