Advertisement

Topics in Catalysis

, Volume 57, Issue 6–9, pp 627–636 | Cite as

Rh–Fe/Ca–Al2O3: A Unique Catalyst for CO-Free Hydrogen Production in Low Temperature Ethanol Steam Reforming

  • Catherine K. S. Choong
  • Luwei ChenEmail author
  • Yonghua Du
  • Zhan Wang
  • Liang Hong
  • Armando BorgnaEmail author
Original Paper

Abstract

Low temperature ethanol steam reforming (ESR) was studied over a series of 1 wt% Rh–x % Fe catalysts with various Fe loading (x = 0–10 wt%) and on different supports (Ca–Al2O3, SiO2 and ZrO2). The results show that close interaction between Rh and Fe is required to reduce the CO selectivity to almost negligible values. In addition, Rh–Fe supported on Ca–Al2O3 exhibits the best performance in terms of CO selectivity and hydrogen yield as compared to other supports. Characterization by XPS and XANES indicates the presence of FexOy species upon reduction, resulting in the formation of coordinatively unsaturated ferrous (CUF) active sites along the Rh–FexOy interface. These CUF sites promote water–gas shift reaction during low temperature ESR. Temperature programmed oxidation and Raman spectroscopy of spent catalysts also indicate that the addition of iron oxide reduces coke deposition and forms more reactive coke. Hence, the catalyst lifespan is significantly extended.

Keywords

Rh catalyst Iron promotion Steam reforming of ethanol Hydrogen production CO-free 

Notes

Acknowledgments

We gratefully acknowledge the financial support from the Science and Engineering Research Council (SERC) of the Agency for Science, Technology and Research (A*STAR) of Singapore and Professor Lin Jianyi for his valuable and helpful comments on this manuscript.

References

  1. 1.
    Song C (2002) Catal Today 77:17CrossRefGoogle Scholar
  2. 2.
    Hulteberg C (2012) Int J Hydrogen Energy 37:3978CrossRefGoogle Scholar
  3. 3.
    Ni M, Leung DYC, Leung MKH (2007) Int J Hydrogen Energy 32:3238CrossRefGoogle Scholar
  4. 4.
    Llorca J, de la Piscina PR, Dalmon J-A, Sales J, Homs N (2003) Appl Catal B 43:355CrossRefGoogle Scholar
  5. 5.
    Zhang C, Zhang P, Li S, Wu G, Ma X, Gong J (2012) J Phys Chem Chem Phys 14:3295CrossRefGoogle Scholar
  6. 6.
    Song H, Ozkan US (2009) J Catal 261:66CrossRefGoogle Scholar
  7. 7.
    Lima da Silva A, Malfatti CldF, Müller IL (2009) Int J Hydrogen Energy 34:4321CrossRefGoogle Scholar
  8. 8.
    Liguras DK, Kondarides DI, Verykios XE (2003) Appl Catal B 43:345CrossRefGoogle Scholar
  9. 9.
    Chen L, Choong CKS, Zhong Z, Huang L, Ang TP, Hong L, Lin J (2010) J Catal 276:197CrossRefGoogle Scholar
  10. 10.
    Lei Y, Cant NW, Trimm DL (2006) J Catal 239:227CrossRefGoogle Scholar
  11. 11.
    Fornasiero P, Dimonte R, Rao GR, Kaspar J, Meriani S, Trovarelli A, Graziani M (1995) J Catal 151:168CrossRefGoogle Scholar
  12. 12.
    Lin H-Y, Chen Y-W, Li C (2003) Thermochim Acta 400:61CrossRefGoogle Scholar
  13. 13.
    Wielers AFH, Kock AJHM, Hop CECA, Geus JW, van Der Kraan AM (1989) J Catal 117:1CrossRefGoogle Scholar
  14. 14.
    Chen W, Ding Y, Song X, Wang T, Luo H (2011) Appl Catal A 407:231CrossRefGoogle Scholar
  15. 15.
    Kock AJHM, Fortuin HM, Geus JW (1985) J Catal 96:261CrossRefGoogle Scholar
  16. 16.
    Wan H-J, Wu B-S, Zhang C-H, Xiang H-W, Li Y-W, Xu B-F, Yi F (2007) Catal Commun 8:1538CrossRefGoogle Scholar
  17. 17.
    Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441CrossRefGoogle Scholar
  18. 18.
    Ratnasamy C, Wagner JP (2009) Catal Rev 51:325CrossRefGoogle Scholar
  19. 19.
    Rodriguez JA, Liu P, Hrbek J, Evans J, Pérez M (2007) Angew Chem Int Ed 46:1329CrossRefGoogle Scholar
  20. 20.
    Grenoble DC, Estadt MM, Ollis DF (1981) J Catal 67:90CrossRefGoogle Scholar
  21. 21.
    Fu Q, Li W-X, Yao Y, Liu H, Su H-Y, Ma D, Gu X-K, Chen L, Wang Z, Zhang H, Wang B, Bao X (2010) Science 328:1141CrossRefGoogle Scholar
  22. 22.
    Burch R, Hayes MJ (1997) J Catal 165:249CrossRefGoogle Scholar
  23. 23.
    Chen L, Choong CKS, Zhong Z, Huang L, Wang Z, Lin J (2012) Int J Hydrogen Energy 37:16321CrossRefGoogle Scholar
  24. 24.
    Roh H-S, Platon A, Wang Y, King D (2006) Catal Lett 110:1CrossRefGoogle Scholar
  25. 25.
    Profeti LPR, Ticianelli EA, Assaf EM (2008) J Power Sour 175:482CrossRefGoogle Scholar
  26. 26.
    Choong CKS, Huang L, Zhong Z, Lin J, Hong L, Chen L (2011) Appl Catal A 407:155CrossRefGoogle Scholar
  27. 27.
    Solymosi F, Erdőhelyi A (1981) Surf Sci Lett 110:L630Google Scholar
  28. 28.
    Virginie M, Araque M, Roger A-C, Vargas JC, Kiennemann A (2008) Catal Today 138:21CrossRefGoogle Scholar
  29. 29.
    Li Y, Bowker M (1993) Surf Sci 285:219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
  2. 2.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations