Skip to main content
Log in

Rh–Fe/Ca–Al2O3: A Unique Catalyst for CO-Free Hydrogen Production in Low Temperature Ethanol Steam Reforming

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Low temperature ethanol steam reforming (ESR) was studied over a series of 1 wt% Rh–x % Fe catalysts with various Fe loading (x = 0–10 wt%) and on different supports (Ca–Al2O3, SiO2 and ZrO2). The results show that close interaction between Rh and Fe is required to reduce the CO selectivity to almost negligible values. In addition, Rh–Fe supported on Ca–Al2O3 exhibits the best performance in terms of CO selectivity and hydrogen yield as compared to other supports. Characterization by XPS and XANES indicates the presence of FexOy species upon reduction, resulting in the formation of coordinatively unsaturated ferrous (CUF) active sites along the Rh–FexOy interface. These CUF sites promote water–gas shift reaction during low temperature ESR. Temperature programmed oxidation and Raman spectroscopy of spent catalysts also indicate that the addition of iron oxide reduces coke deposition and forms more reactive coke. Hence, the catalyst lifespan is significantly extended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Song C (2002) Catal Today 77:17

    Article  CAS  Google Scholar 

  2. Hulteberg C (2012) Int J Hydrogen Energy 37:3978

    Article  CAS  Google Scholar 

  3. Ni M, Leung DYC, Leung MKH (2007) Int J Hydrogen Energy 32:3238

    Article  CAS  Google Scholar 

  4. Llorca J, de la Piscina PR, Dalmon J-A, Sales J, Homs N (2003) Appl Catal B 43:355

    Article  CAS  Google Scholar 

  5. Zhang C, Zhang P, Li S, Wu G, Ma X, Gong J (2012) J Phys Chem Chem Phys 14:3295

    Article  CAS  Google Scholar 

  6. Song H, Ozkan US (2009) J Catal 261:66

    Article  CAS  Google Scholar 

  7. Lima da Silva A, Malfatti CldF, Müller IL (2009) Int J Hydrogen Energy 34:4321

    Article  CAS  Google Scholar 

  8. Liguras DK, Kondarides DI, Verykios XE (2003) Appl Catal B 43:345

    Article  CAS  Google Scholar 

  9. Chen L, Choong CKS, Zhong Z, Huang L, Ang TP, Hong L, Lin J (2010) J Catal 276:197

    Article  CAS  Google Scholar 

  10. Lei Y, Cant NW, Trimm DL (2006) J Catal 239:227

    Article  CAS  Google Scholar 

  11. Fornasiero P, Dimonte R, Rao GR, Kaspar J, Meriani S, Trovarelli A, Graziani M (1995) J Catal 151:168

    Article  CAS  Google Scholar 

  12. Lin H-Y, Chen Y-W, Li C (2003) Thermochim Acta 400:61

    Article  CAS  Google Scholar 

  13. Wielers AFH, Kock AJHM, Hop CECA, Geus JW, van Der Kraan AM (1989) J Catal 117:1

    Article  CAS  Google Scholar 

  14. Chen W, Ding Y, Song X, Wang T, Luo H (2011) Appl Catal A 407:231

    Article  CAS  Google Scholar 

  15. Kock AJHM, Fortuin HM, Geus JW (1985) J Catal 96:261

    Article  CAS  Google Scholar 

  16. Wan H-J, Wu B-S, Zhang C-H, Xiang H-W, Li Y-W, Xu B-F, Yi F (2007) Catal Commun 8:1538

    Article  CAS  Google Scholar 

  17. Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441

    Article  CAS  Google Scholar 

  18. Ratnasamy C, Wagner JP (2009) Catal Rev 51:325

    Article  CAS  Google Scholar 

  19. Rodriguez JA, Liu P, Hrbek J, Evans J, Pérez M (2007) Angew Chem Int Ed 46:1329

    Article  CAS  Google Scholar 

  20. Grenoble DC, Estadt MM, Ollis DF (1981) J Catal 67:90

    Article  CAS  Google Scholar 

  21. Fu Q, Li W-X, Yao Y, Liu H, Su H-Y, Ma D, Gu X-K, Chen L, Wang Z, Zhang H, Wang B, Bao X (2010) Science 328:1141

    Article  CAS  Google Scholar 

  22. Burch R, Hayes MJ (1997) J Catal 165:249

    Article  CAS  Google Scholar 

  23. Chen L, Choong CKS, Zhong Z, Huang L, Wang Z, Lin J (2012) Int J Hydrogen Energy 37:16321

    Article  CAS  Google Scholar 

  24. Roh H-S, Platon A, Wang Y, King D (2006) Catal Lett 110:1

    Article  CAS  Google Scholar 

  25. Profeti LPR, Ticianelli EA, Assaf EM (2008) J Power Sour 175:482

    Article  CAS  Google Scholar 

  26. Choong CKS, Huang L, Zhong Z, Lin J, Hong L, Chen L (2011) Appl Catal A 407:155

    Article  CAS  Google Scholar 

  27. Solymosi F, Erdőhelyi A (1981) Surf Sci Lett 110:L630

    CAS  Google Scholar 

  28. Virginie M, Araque M, Roger A-C, Vargas JC, Kiennemann A (2008) Catal Today 138:21

    Article  CAS  Google Scholar 

  29. Li Y, Bowker M (1993) Surf Sci 285:219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Science and Engineering Research Council (SERC) of the Agency for Science, Technology and Research (A*STAR) of Singapore and Professor Lin Jianyi for his valuable and helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luwei Chen or Armando Borgna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choong, C.K.S., Chen, L., Du, Y. et al. Rh–Fe/Ca–Al2O3: A Unique Catalyst for CO-Free Hydrogen Production in Low Temperature Ethanol Steam Reforming. Top Catal 57, 627–636 (2014). https://doi.org/10.1007/s11244-013-0221-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0221-0

Keywords

Navigation