Skip to main content

Advertisement

Log in

Fischer–Tropsch Synthesis: Effect of K Loading on the Water–Gas Shift Reaction and Liquid Hydrocarbon Formation Rate over Precipitated Iron Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effect of K loading on the water–gas shift (WGS) reaction and hydrocarbon formation rate during Fischer–Tropsch synthesis (FTS) was studied over 100 Fe/5.1 Si/2 Cu/x K (x = 1.25 or 3) precipitated catalysts using a 1-L continuously stirred tank reactor. The catalysts were tested over a wide range of experimental conditions: 260–270 °C, 1.3 MPa, H2/CO = 0.67 and 20–90 % CO conversions. On the low K loading (1.25 % K) Fe catalyst, the H2 deficiency required for the FTS reaction was made up by the WGS reaction only at high CO conversion level, i.e. >70 %; however, increasing potassium loading to 3 % dramatically improved the WGS reaction rate which provided enough hydrogen for the FTS reaction even at low CO conversion level, i.e. 30 %. Kinetic analysis suggests that increasing K loading resulted in significant increases in the WGS rate constant relative to that of FTS, which is a major cause of the high WGS activity on the high K loading catalyst. Both the low and high potassium containing iron catalysts have high liquid oil and solid wax formation rates, i.e. 0.78–0.93 g/g-cat/h at 260 °C, 1.3 MPa, H2/CO = 0.67 and 50 % CO conversion, but increasing potassium loading from 1.25 to 3 % shifted the primary product to wax (70 %) from oil (73.5 %). The wax fraction increased with increasing CO conversion for both iron catalysts. The effect of K loading on initial FTS activity and hydrocarbon distribution/selectivity of the Fe catalysts was also studied. High K loading, i.e. 3 % K, increased the iron carburization rate and significantly shortened the induction period of the FTS reaction. Secondary reactions of olefins were remarkably suppressed and the olefin content was greatly enhanced with increasing K loading from 1.25 to 3 %, consistent with a number of studies in the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Davis BH (1993, 1999, 2002, 2011) DOE final technical reports

  2. Bukur DB (1994, 1999, 2003) DOE final reports

  3. Huffman GP (2001, 2002, 2005) DOE final reports

  4. Bukur DB, Mukesh DS, Patal A (1990) Ind Eng Chem Res 29:194

    Article  CAS  Google Scholar 

  5. Raje AP, O’Brien RJ, Davis BH (1998) J Catal 180:36

    Article  CAS  Google Scholar 

  6. Huo C, Wu B, Gao P, Yang Y, Li Y, Jiao H (2011) Angew Chem Int Ed 50:7403

    Article  CAS  Google Scholar 

  7. Yang Y, Xiang H, Xu Y, Bai L, Li Y (2004) Appl Catal 266:181

    Article  CAS  Google Scholar 

  8. Ma W, Kugler EL, Dadyburjor DB (2007) Energy Fuels 21:1832

    Article  CAS  Google Scholar 

  9. Lohitharn N, Goodwin JG Jr (2008) J Catal 260:7

    Article  CAS  Google Scholar 

  10. Kolbel H, Ralek M (1980) Catal Rev Sci Eng 21:225

    Article  Google Scholar 

  11. Li SZ, Li AW, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197

    Article  CAS  Google Scholar 

  12. O’Brien RJ, Davis BH (2004) Catal Lett 94:1

    Article  Google Scholar 

  13. Ma WP, Kugler EL, Dadyburjor DB (2011) Energy Fuels 25:1931

    Article  CAS  Google Scholar 

  14. Kolbel H, Ackermann P, Ruschenburg E, Langheim R, Engelhardt F (1951) Chem Ing Tech 23:153

    Article  CAS  Google Scholar 

  15. Wan HJ, Wu BS, Zhang CH, Xiang HW, Li YW (2008) J Mol Catal 283:33

    Article  CAS  Google Scholar 

  16. O’Brien RJ, Xu LG, Spicer RL, Davis BH (1996) Energy Fuels 10:921

    Article  Google Scholar 

  17. Luo MS, O’Brien RJ, Bao SQ, Davis BH (2003) Appl Catal 239:111

    Article  CAS  Google Scholar 

  18. Mansker LD, Jin YM, Bukur DB, Datye AK, Mansker LD et al (1999) Appl Catal 186:277

    Article  CAS  Google Scholar 

  19. Kolbel H (1960) Kalium als Strucktureller und Energetischer Promotor in isenkatalysatoren In: Actes du Deuxieme Congres Znternational de Catalyse. Technip: Paris, vol 11, pp 2075–2099

  20. Kolbel H, Giehring H (1963) Brennstojj Chem 44:343

    Google Scholar 

  21. Ma WP, Ding YJ, Carreto Vázquez VC, Bukur DB (2004) Appl Catal 268:99

    Article  CAS  Google Scholar 

  22. Jacobs G, Sarkar A, Davis H, Cronauer D, Kropf AJ, Marshall CL (2009) In Advances in Fischer–Tropsch synthesis, catalysts, and catalysis, p 119

  23. Ribeiro MC, Jacobs G, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2010) J Phys Chem 114:7895

    CAS  Google Scholar 

  24. Bukur DB, Lang XS (1999) Ind Eng Chem Res 38:3270

    Article  CAS  Google Scholar 

  25. Zimmerman W, Bukur DB (1990) Can J Chem Eng 68:292

    Article  CAS  Google Scholar 

  26. Newsome DS (1980) Catal Rev Sci Eng 21:275

    Article  CAS  Google Scholar 

  27. Anderson RB (1984) The Fischer–Tropsch synthesis. Wiley, New York, pp 140–159

    Google Scholar 

  28. Yao Y (2011) Fischer–Tropsch synthesis using CO2 containing syngas mixtures over cobalt and iron based catalysts. PhD thesis, Johannesburg

  29. Donnelly TJ, Yates IC, Satterfield CN (1989) Appl Catal 52:93

    Article  CAS  Google Scholar 

  30. Ji Y, Xiang H, Yang J, Xu Y, Li Y, Zhong B (2001) Appl Catal 214:77

    Article  CAS  Google Scholar 

  31. Masuku CM, Shafer WD, Ma W, Gnanamani MK, Jacobs G, Hildebrandt D, Glasser D, Davis BH (2012) J Catal 287:93

    Article  CAS  Google Scholar 

  32. Shi B, Davis BH (2004) Appl Catal 277:61

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by financial support from DOE grants (DE-AC22-99FT40540) and the Commonwealth of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Jacobs, G., Graham, U.M. et al. Fischer–Tropsch Synthesis: Effect of K Loading on the Water–Gas Shift Reaction and Liquid Hydrocarbon Formation Rate over Precipitated Iron Catalysts. Top Catal 57, 561–571 (2014). https://doi.org/10.1007/s11244-013-0212-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0212-1

Keywords

Navigation