Skip to main content
Log in

Baeyer–Villiger Oxidation of Cyclohexanone in Aqueous Medium with In Situ Generation of Peracid Catalyzed by Perhydrolase CLEA

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A perhydrolase, immobilized as a cross linked enzyme aggregate (CLEA), was employed to catalyze the in situ formation of peracetic acid (PAA) from ethylene glycol diacetate (EGDA) and hydrogen peroxide. The produced PAA was used for the Baeyer–Villiger oxidation of cyclohexanone, which afforded caprolactone in 63 % yield. The effect of type and amount of acyl donor, solvent, pH, temperature and ratio of cyclohexanone to hydrogen peroxide on the production of caprolactone was studied. The highest caprolactone yield was obtained with 100 mM EGDA as the acyl donor at pH 6 and room temperature using a ratio of cyclohexanone to hydrogen peroxide ratio of 1:4. Interestingly, the perhydrolase CLEA exhibited the highest activity in aqueous medium in contrast to the well studied lipase B from Candida antarctica. The perhydrolase CLEA proved to be a very efficient catalyst; the K m and Vmax values were 118 mM and 56.3 μmol min−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. United Nations General Assembly The future we want (2012) http://daccess-dds-ny.un.org/doc/UNDOC/LTD/N12/436/88/PDF/N1243688.pdf?OpenElement. Accessed 12 Aug 2012

  2. Jimenez C, Curzons AD, Constable DJC, Cunningham VL (2004) Int J Life Cycle Assess 9:114

    Article  Google Scholar 

  3. Bernhardt P, Hult K, Kazlauskas RJ (2005) Angew Chem 117:2802

    Article  Google Scholar 

  4. Wittcoff HA, Reuben BG, Plotkin JS (2004) Industrial organic chemicals. Wiley, Hoboken

    Book  Google Scholar 

  5. Yin DL, Bernhardt P, Morley KL, Jiang Y, Cheeseman JD, Purpero V, Schrag JD, Kazlauskas RJ (2010) Biochemistry 49:1931

    Article  CAS  Google Scholar 

  6. Björkling F, Godfretsen SE, Kirk O (1990) J Chem Soc Chem Commun 19:1301

    Article  Google Scholar 

  7. Lee W, Vojcic L, Despotovic D, Prodanovic R, Maurer KH, Schwaneberg U, Zacharias M (2010) Theor Chem Acc 125:375

    Article  CAS  Google Scholar 

  8. Park SM (2011) J Biosci Bioeng 112:473

    Article  CAS  Google Scholar 

  9. Pickard M, Gross J, Lübbert E, Tölzer S, Krauss S, van Pée KH, Berkessel A (1997) Angew Chem Int Ed Engl 36:1196

    Article  Google Scholar 

  10. Hickman WS (2002) Rev Prog Color 32:13

    Article  CAS  Google Scholar 

  11. Kitis M (2004) Environ Int 30:47

    Article  CAS  Google Scholar 

  12. McDonnell G, Russell AD (1999) Clin Microbiol Rev 12:147

    CAS  Google Scholar 

  13. Yin DL, Jing Q, AlDajani WW, Duncan S, Tschirner U, Schilling J, Kazlauskas RJ (2011) Bioresource Technol 102:5183

    Article  CAS  Google Scholar 

  14. Lemoult SC, Richardson PF, Roberts SM (1995) J Chem Soc Perkin Trans 1:89

    Article  Google Scholar 

  15. Pchelka BK, Gelo-Pujic M, Guibé-Jampel E (1998) J Chem Soc Perkin Trans 1:2625

    Article  Google Scholar 

  16. Björkling F, Frykman H, Godtfredsen SE, Kirk O (1992) Tetrahedron 48:4587

    Article  Google Scholar 

  17. Klass MR, Warwel S (1999) Ind Crop Prod 9:125

    Article  Google Scholar 

  18. Tufvesson P, Adlercreutz D, Lundmark S, Manea M, Hatti-Kaul R (2008) J Mol Catal B Enzym 54:1

    Article  CAS  Google Scholar 

  19. Sheldon RA (2007) Adv Synth Catal 349:1289

    Article  CAS  Google Scholar 

  20. Cao L, van Rantwijk F, Sheldon RA (2000) Org Lett 10:1361

    Article  Google Scholar 

  21. Kotlewska AJ, van Rantwijk F, Sheldon RA, Arends IWCE (2011) Green Chem 13:2154

    Article  CAS  Google Scholar 

  22. Chávez G, Hatti-Kaul R, Sheldon RA, Mamo G (2012) J Mol Catal B Enzym 89:67

    Article  Google Scholar 

  23. Amin NS, Boston MG, Bott RR, Cervin MA, Concar EM, Gustwiller ME, Jones BE, Liebeton K, Miracle GS, Oh H, Poulose AJ, Ramer SW, Scheibel JJ, Weyler W, Whited GM. (2005) WO2005056782A2

  24. Renz M, Meunier B (1999) Eur J Org Chem 1999:737

    Article  Google Scholar 

  25. Orellana C, Camocho S, Adlercreutz D, Mattiasson B, Hatti-Kaul R (2005) Eur J Lipid Sci Technol 107:864

    Article  Google Scholar 

  26. Battachayra S, Drews A, Lyagin E, Kraume M, Ansorge-Schumacher MB (2012) Chem Eng Technol 35:1

    Google Scholar 

  27. Ríos MY, Salazar E, Olivo HF (2007) Green Chem 9:459

    Article  Google Scholar 

  28. Klibanov AM (2001) Nature 409:241

    Article  CAS  Google Scholar 

  29. Yin D, Kazlauskas RJ (2012) Chem Eur J 18:8130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Swedish International Development Agency for Research Collaboration with Developing countries (Sida/SAREC) and the FP7 Marie Curie ITN People Program of the BIOTRAINS project are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Georgina Chávez or Roger A. Sheldon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chávez, G., Rasmussen, JA., Janssen, M. et al. Baeyer–Villiger Oxidation of Cyclohexanone in Aqueous Medium with In Situ Generation of Peracid Catalyzed by Perhydrolase CLEA. Top Catal 57, 349–355 (2014). https://doi.org/10.1007/s11244-013-0190-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0190-3

Keywords

Navigation