Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion

  • 1573 Accesses

  • 31 Citations


We use density functional theory calculations to investigate the stability of cubic perovskites for photo-electrochemical water splitting taking both materials in their bulk crystal structure and dissolved phases into account. The method is validated through a detailed comparison of the calculated and experimental Pourbaix diagrams for TiO2 and ZnO. For a class of 23 oxides, oxynitrides, and oxyfluorides, which were recently proposed as candidates for one-photon water splitting, our calculations predict most of the materials to be stable at potentials around the water red-ox level. The oxides become less stable at lower potentials, while the oxynitrides become unstable at higher potentials. We discuss the implications of these findings for the problem of photo-corrosion of water splitting electrodes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK (2006) Nat Mater 5(11):909. doi:10.1038/nmat1752

  2. 2.

    Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) Nat Mater 12(3):191. doi:10.1038/nmat3568

  3. 3.

    Johannesson GH, Bligaard T, Ruban AV, Skriver HL, Jacobsen KW, Nørskov JK (2002) Phys Rev Lett 88(25):255506. doi:10.1103/PhysRevLett.88.255506

  4. 4.

    Franceschetti A, Zunger A (1999) Nature 402:60. doi:10.1038/46995

  5. 5.

    Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B (1998) Nature 392:694. doi:10.1038/33647

  6. 6.

    Setyawan W, Gaume RM, Lam S, Feigelson RS, Curtarolo S (2011) . ACS Comb Sci 13(4):382. doi:10.1021/co200012w

  7. 7.

    Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sanchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A (2011) J Phys Chem Lett 2(17):2241. doi:10.1021/jz200866s

  8. 8.

    Olivares-Amaya R, Amador-Bedolla C, Hachmann J, Atahan-Evrenk S, Sanchez-Carrera RS, Vogt L, Aspuru-Guzik A (2011) Energy Environ Sci 4:4849. doi:10.1039/C1EE02056K

  9. 9.

    O’Boyle NM, Campbell CM, Hutchison GR (2011) J Phys Chem C 115(32):16200. doi:10.1021/jp202765c

  10. 10.

    Armiento R, Kozinsky B, Fornari M, Ceder G (2011) Phys Rev B 84(1):014103. doi:10.1103/PhysRevB.84.014103

  11. 11.

    Castelli IE, Olsen T, Datta S, Landis DD, Dahl S, Thygesen KS, Jacobsen KW (2012) Energy Environ Sci 5:5814. doi:10.1039/C1EE02717D

  12. 12.

    Castelli IE, Landis DD, Thygesen KS, Dahl S, Chorkendorff I, Jaramillo TF, Jacobsen KW (2012) Energy Environ Sci 5:9034.doi:10.1039/C2EE22341D

  13. 13.

    Fujishima A, Honda K (1972) Nature 238(5358):37. doi:10.1038/238037a0

  14. 14.

    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Nature 440(7082):295. doi:10.1038/440295a

  15. 15.

    Yamasita D, Takata T, Hara M, Kondo J, Domen K (2004) Solid State Ion 172:591. doi:10.1016/j.ssi.2004.04.033

  16. 16.

    Castelli IE, Thygesen KS, Jacobsen KW (2013) MRS online proceedings library 1523. doi:10.1557/opl.2013.450.

  17. 17.


  18. 18.

    Materials Project: A Materials Genome Approach

  19. 19.

    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71(3):35109. doi:10.1103/PhysRevB.71.035109

  20. 20.

    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Hakkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiotz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22(25):253202. doi:10.1088/0953-8984/22/25/253202

  21. 21.

    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59(1):7413. doi:10.1103/PhysRevB.59.7413

  22. 22.

    Verink ED (2011) Simplified procedure for constructing Pourbaix diagrams. Wiley, Hoboken, p 93. doi:10.1002/9780470872864.ch7

  23. 23.

    Johnson JW, Oelkers EH, Helgeson HC (1992) Comput Geosci 18(7):899. doi:10.1016/0098-3004(92)90029-Q

  24. 24.

    Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. No. v. 1 in Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Press, New York

  25. 25.

    Persson KA, Waldwick B, Lazic P, Ceder G (2012) Phys Rev B 85:235438 doi:10.1103/PhysRevB.85.235438

  26. 26.

    Dionigi F, Vesborg PCK, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I (2011) Energy Environ Sci 4:2937. doi:10.1039/C1EE01242H

  27. 27.

    Dionigi F, Vesborg PC, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I (2012) J Catal 292:26. doi: 10.1016/j.jcat.2012.03.021

  28. 28.

    Connolly J (2005) Earth Planet Sci Lett 236(12):524. doi:10.1016/j.epsl.2005.04.033

Download references


The authors would like to thank Prof. Jan Rossmeisl for useful discussions. The authors acknowledge support from the Catalysis for Sustainable Energy (CASE) initiative funded by the Danish Ministry of Science, Technology and Innovation, and from the Center on Nanostructuring for the Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center founded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0001060

Author information

Correspondence to Ivano E. Castelli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castelli, I.E., Thygesen, K.S. & Jacobsen, K.W. Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion. Top Catal 57, 265–272 (2014).

Download citation


  • Water splitting
  • Density functional theory
  • Pourbaix diagrams
  • Corrosion
  • Photo-corrosion