Selective Electrocatalysis on Platinum Nanoparticles with Preferential (100) Orientation Prepared by Cathodic Corrosion

Abstract

The “cathodic corrosion” method for nanoparticle synthesis has been used to produce Pt nano-crystals with a preferential (100) orientation. These particles are surfactant-free and electrochemically clean, featuring a significant percentage of (100) terrace sites, as confirmed by electrochemical characterization tests to establish the amount of (100) sites: blank voltammetry in H2SO4, adsorbed CO stripping, and Ge irreversible adsorption. The high catalytic activity of these preferentially oriented particles is confirmed for reactions preferring (100) sites, such as dimethyl ether oxidation, ammonia oxidation, and nitrite reduction in alkaline media. In the case of nitrite reduction it is demonstrated that, similarly to (100) terraces of a well-ordered Pt single crystal electrode, the (100) facets of the nano-crystals can steer the reaction towards the selective formation of N2. The use of an inexpensive preparation method to obtain nano-electrocatalysts that can perform selective electrocatalytic reactions such as ammonia oxidation and nitrite reduction, can pave the way for a new generation of practical catalysts for environmental and energy purposes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Raimondi F, Scherer GG, Kotz R, Wokaun A (2005) Angew Chem-Int Edit 44:2190

    CAS  Article  Google Scholar 

  2. 2.

    Li YM, Somorjai GA (2010) Nano Lett 10:2289

    CAS  Article  Google Scholar 

  3. 3.

    Ahmadi TS, Wang ZL, Green TC, Henglein A, ElSayed MA (1996) Science 272:1924

    CAS  Article  Google Scholar 

  4. 4.

    Yang J, Ying JY (2009) Nat Mater 8:683

    CAS  Article  Google Scholar 

  5. 5.

    Tao AR, Habas S, Yang PD (2008) Small 4:310

    CAS  Article  Google Scholar 

  6. 6.

    Xia YN, Xiong YJ, Lim B, Skrabalak SE (2009) Angew Chem-Int Edit 48:60

    CAS  Article  Google Scholar 

  7. 7.

    Kuhn JN, Tsung CK, Huang W, Somorjai GA (2009) J Catal 265:209

    CAS  Article  Google Scholar 

  8. 8.

    Park JY, Aliaga C, Renzas JR, Lee H, Somorjai GA (2009) Catal Lett 129:1

    CAS  Article  Google Scholar 

  9. 9.

    Kim C, Lee H (2009) Catal Commun 10:1305

    CAS  Article  Google Scholar 

  10. 10.

    Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Montiel V, Aldaz A, Feliu JM (2011) Electrochem Commun 13:502

    CAS  Article  Google Scholar 

  11. 11.

    Solla-Gullon J, Rodriguez P, Herrero E, Aldaz A, Feliu JM (2008) Phys Chem Chem Phys 10:1359

    CAS  Article  Google Scholar 

  12. 12.

    Solla-Gullon J, Vidal-Iglesias FJ, Herrero E, Feliu JM, Aldaz A (2006) Electrochem Commun 8:189

    CAS  Article  Google Scholar 

  13. 13.

    Solla-Gullon J, Montiel V, Aldaz A, Clavilier J (2000) J Electroanal Chem 491:69

    CAS  Article  Google Scholar 

  14. 14.

    Vidal-Iglesias FJ, Solla-Gullon J, Rodriguez P, Herrero E, Montiel V, Feliu JM, Aldaz A (2004) Electrochem Commun 6:1080

    CAS  Article  Google Scholar 

  15. 15.

    Monzo J, Koper MTM, Rodriguez P (2012) Chem Phys Chem 13:709

    CAS  Google Scholar 

  16. 16.

    Ahmadi TS, Wang ZL, Henglein A, ElSayed MA (1996) Chem Mater 8:1161

    CAS  Article  Google Scholar 

  17. 17.

    Clavilier J, Feliu JM, Aldaz A (1988) J Electroanal Chem 243:419

    CAS  Article  Google Scholar 

  18. 18.

    Rodriguez P, Solla-Gullon J, Vidal-Iglesias FJ, Herrero E, Aldaz A, Feliu JM (2005) Anal Chem 77:5317

    CAS  Article  Google Scholar 

  19. 19.

    Rodriguez P, Herrero E, Solla-Gullon J, Vidal-Iglesias FJ, Aldaz A, Feliu JM (2005) Electrochim Acta 50:4308

    CAS  Article  Google Scholar 

  20. 20.

    Rodriguez P, Herrero E, Solla-Gullon J, Vidal-Iglesias EJ, Aldaz A, Feliu JM (2005) Electrochim Acta 50:3111

    CAS  Article  Google Scholar 

  21. 21.

    Peng ZM, Kisielowski C, Bell AT (2012) Chem Commun 48:1854

    CAS  Article  Google Scholar 

  22. 22.

    Huang W, Chen S, Zheng JF, Li ZL (2009) Electrochem Commun 11:469

    CAS  Article  Google Scholar 

  23. 23.

    Yanson AI, Rodriguez P, Garcia-Araez N, Mom RV, Tichelaar FD, Koper MTM (2011) Angew Chem Int Ed 50:6346

    CAS  Article  Google Scholar 

  24. 24.

    Rodriguez P, Tichelaar FD, Koper MTM, Yanson AI (2011) J Am Chem Soc 133:17626

    CAS  Article  Google Scholar 

  25. 25.

    Yanson AI, Antonov PV, Rodriguez P, Koper MTM (2013) Electrochim Acta doi. doi:10.1016/j.electacta.2013.01.056

    Google Scholar 

  26. 26.

    Yanson AI, Antonov PV, Yanson YI, Koper MTM (2013) Electrochim Acta Submitted 87:1

    Article  Google Scholar 

  27. 27.

    Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Science 316:732

    CAS  Article  Google Scholar 

  28. 28.

    Hsu IJ, Esposito DV, Mahoney EG, Black A, Chen JGG (2011) J Power Sour 196:8307

    CAS  Article  Google Scholar 

  29. 29.

    Koper MTM (2011) Nanoscale 3:2054

    CAS  Article  Google Scholar 

  30. 30.

    Duca M, Koper MTM (2012) Energy Environ Sci 5:9726

    CAS  Article  Google Scholar 

  31. 31.

    Ye S, Hattori H, Kita H (1992) Ber Bunsen-Ges Phys Chem 96:1884

    CAS  Article  Google Scholar 

  32. 32.

    Gao YZ, Kita H, Hattori H (1994) Chem Lett 4:2093

    Article  Google Scholar 

  33. 33.

    Vidal-Iglesias FJ, Solla-Gullon J, Feliu JM, Baltruschat H, Aldaz A (2006) J Electroanal Chem 588:331

    CAS  Article  Google Scholar 

  34. 34.

    Vidal-Iglesias FJ, Solla-Gullon J, Montiel V, Feliu JM, Aldaz A (2005) J Phys Chem B 109:12914

    CAS  Article  Google Scholar 

  35. 35.

    Vidal-Iglesias FJ, Garcia-Araez N, Montiel V, Feliu JM, Aldaz A (2003) Electrochem Commun 5:22

    CAS  Article  Google Scholar 

  36. 36.

    Duca M, Figueiredo MC, Climent V, Rodriguez P, Feliu JM, Koper MTM (2011) J Am Chem Soc 133:10928

    CAS  Article  Google Scholar 

  37. 37.

    Duca M, Cucarella MO, Rodriguez P, Koper MTM (2010) J Am Chem Soc 132:18042

    CAS  Article  Google Scholar 

  38. 38.

    Lu LL, Yin GP, Tong YJ, Zhang Y, Gao YZ, Osawa M, Ye S (2010) J Electroanal Chem 642:82

    CAS  Article  Google Scholar 

  39. 39.

    Lu LL, Yin GP, Wang ZB, Gao YZ (2009) Electrochem Commun 11:1596

    CAS  Article  Google Scholar 

  40. 40.

    Lai SCS, Koper MTM (2008) Faraday Discuss 140:399

    CAS  Article  Google Scholar 

  41. 41.

    Wonders AH, Housmans THM, Rosca V, Koper MTM (2006) J Appl Electrochem 36:1215

    CAS  Article  Google Scholar 

  42. 42.

    Clavilier J, Faure R, Guinet G, Durand R (1980) J Electroanal Chem 107:205

    CAS  Article  Google Scholar 

  43. 43.

    Climent V, Feliu JM (2011) J Solid State Electrochem 15:1297

    CAS  Article  Google Scholar 

  44. 44.

    Clavilier J, Elachi K, Petit M, Rodes A, Zamakhchari MA (1990) J Electroanal Chem 295:333

    CAS  Article  Google Scholar 

  45. 45.

    Solla-Gullon J, Montiel V, Aldaz A, Clavilier J (2003) J Electrochem Soc 150:104

    Article  Google Scholar 

  46. 46.

    Kinge S, Urgeghe C, De Battisti A, Bonnemann H (2008) Appl Organomet Chem 22:49

    CAS  Article  Google Scholar 

  47. 47.

    Gomez R, Llorca MJ, Feliu JM, Aldaz A (1992) J Electroanal Chem 340:349

    CAS  Article  Google Scholar 

  48. 48.

    Rees NV, Compton RG (2011) Energy Environ Sci 4:1255

    CAS  Article  Google Scholar 

  49. 49.

    Braunchweig B, Hibbitts D, Neurock M, Wieckowski A (2013) Catal Today 202:197

    CAS  Article  Google Scholar 

  50. 50.

    Li H, Kwon Y, Kolb MJ, Calle-Vallejo F, Li Y, Koper MTM (2013) Chem Sus Chem 6:455

    Article  Google Scholar 

  51. 51.

    P J Linstrom, W G Mallard NIST Chemistry WebBook,NIST Standard Reference Database Number 69, http://webbook.nist.gov. Accessed 18 Feb 2010

Download references

Acknowledgments

We acknowledge partial financial support from the European Commission (through FP7 Initial Training Network “ELCAT”, Grant Agreement No. 214 936-2). P.R., A.I.Y. and M.T.M.K. also gratefully acknowledge the Netherlands Organization for Scientific Research (NWO) for VENI, VIDI and VICI grants, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marc T. M. Koper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 373 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duca, M., Rodriguez, P., Yanson, A.I. et al. Selective Electrocatalysis on Platinum Nanoparticles with Preferential (100) Orientation Prepared by Cathodic Corrosion. Top Catal 57, 255–264 (2014). https://doi.org/10.1007/s11244-013-0180-5

Download citation

Keywords

  • Pt(100)
  • Platinum nanoparticles
  • Cubic nanoparticles
  • Nitrite reduction
  • Cathodic corrosion
  • Electrocatalysis