Advertisement

Topics in Catalysis

, Volume 57, Issue 1–4, pp 255–264 | Cite as

Selective Electrocatalysis on Platinum Nanoparticles with Preferential (100) Orientation Prepared by Cathodic Corrosion

  • Matteo Duca
  • Paramaconi Rodriguez
  • Alexei I. Yanson
  • Marc T. M. KoperEmail author
Original Paper

Abstract

The “cathodic corrosion” method for nanoparticle synthesis has been used to produce Pt nano-crystals with a preferential (100) orientation. These particles are surfactant-free and electrochemically clean, featuring a significant percentage of (100) terrace sites, as confirmed by electrochemical characterization tests to establish the amount of (100) sites: blank voltammetry in H2SO4, adsorbed CO stripping, and Ge irreversible adsorption. The high catalytic activity of these preferentially oriented particles is confirmed for reactions preferring (100) sites, such as dimethyl ether oxidation, ammonia oxidation, and nitrite reduction in alkaline media. In the case of nitrite reduction it is demonstrated that, similarly to (100) terraces of a well-ordered Pt single crystal electrode, the (100) facets of the nano-crystals can steer the reaction towards the selective formation of N2. The use of an inexpensive preparation method to obtain nano-electrocatalysts that can perform selective electrocatalytic reactions such as ammonia oxidation and nitrite reduction, can pave the way for a new generation of practical catalysts for environmental and energy purposes.

Keywords

Pt(100) Platinum nanoparticles Cubic nanoparticles Nitrite reduction Cathodic corrosion Electrocatalysis 

Notes

Acknowledgments

We acknowledge partial financial support from the European Commission (through FP7 Initial Training Network “ELCAT”, Grant Agreement No. 214 936-2). P.R., A.I.Y. and M.T.M.K. also gratefully acknowledge the Netherlands Organization for Scientific Research (NWO) for VENI, VIDI and VICI grants, respectively.

Supplementary material

11244_2013_180_MOESM1_ESM.pdf (373 kb)
Supplementary material 1 (PDF 373 kb)

References

  1. 1.
    Raimondi F, Scherer GG, Kotz R, Wokaun A (2005) Angew Chem-Int Edit 44:2190CrossRefGoogle Scholar
  2. 2.
    Li YM, Somorjai GA (2010) Nano Lett 10:2289CrossRefGoogle Scholar
  3. 3.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, ElSayed MA (1996) Science 272:1924CrossRefGoogle Scholar
  4. 4.
    Yang J, Ying JY (2009) Nat Mater 8:683CrossRefGoogle Scholar
  5. 5.
    Tao AR, Habas S, Yang PD (2008) Small 4:310CrossRefGoogle Scholar
  6. 6.
    Xia YN, Xiong YJ, Lim B, Skrabalak SE (2009) Angew Chem-Int Edit 48:60CrossRefGoogle Scholar
  7. 7.
    Kuhn JN, Tsung CK, Huang W, Somorjai GA (2009) J Catal 265:209CrossRefGoogle Scholar
  8. 8.
    Park JY, Aliaga C, Renzas JR, Lee H, Somorjai GA (2009) Catal Lett 129:1CrossRefGoogle Scholar
  9. 9.
    Kim C, Lee H (2009) Catal Commun 10:1305CrossRefGoogle Scholar
  10. 10.
    Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Montiel V, Aldaz A, Feliu JM (2011) Electrochem Commun 13:502CrossRefGoogle Scholar
  11. 11.
    Solla-Gullon J, Rodriguez P, Herrero E, Aldaz A, Feliu JM (2008) Phys Chem Chem Phys 10:1359CrossRefGoogle Scholar
  12. 12.
    Solla-Gullon J, Vidal-Iglesias FJ, Herrero E, Feliu JM, Aldaz A (2006) Electrochem Commun 8:189CrossRefGoogle Scholar
  13. 13.
    Solla-Gullon J, Montiel V, Aldaz A, Clavilier J (2000) J Electroanal Chem 491:69CrossRefGoogle Scholar
  14. 14.
    Vidal-Iglesias FJ, Solla-Gullon J, Rodriguez P, Herrero E, Montiel V, Feliu JM, Aldaz A (2004) Electrochem Commun 6:1080CrossRefGoogle Scholar
  15. 15.
    Monzo J, Koper MTM, Rodriguez P (2012) Chem Phys Chem 13:709Google Scholar
  16. 16.
    Ahmadi TS, Wang ZL, Henglein A, ElSayed MA (1996) Chem Mater 8:1161CrossRefGoogle Scholar
  17. 17.
    Clavilier J, Feliu JM, Aldaz A (1988) J Electroanal Chem 243:419CrossRefGoogle Scholar
  18. 18.
    Rodriguez P, Solla-Gullon J, Vidal-Iglesias FJ, Herrero E, Aldaz A, Feliu JM (2005) Anal Chem 77:5317CrossRefGoogle Scholar
  19. 19.
    Rodriguez P, Herrero E, Solla-Gullon J, Vidal-Iglesias FJ, Aldaz A, Feliu JM (2005) Electrochim Acta 50:4308CrossRefGoogle Scholar
  20. 20.
    Rodriguez P, Herrero E, Solla-Gullon J, Vidal-Iglesias EJ, Aldaz A, Feliu JM (2005) Electrochim Acta 50:3111CrossRefGoogle Scholar
  21. 21.
    Peng ZM, Kisielowski C, Bell AT (2012) Chem Commun 48:1854CrossRefGoogle Scholar
  22. 22.
    Huang W, Chen S, Zheng JF, Li ZL (2009) Electrochem Commun 11:469CrossRefGoogle Scholar
  23. 23.
    Yanson AI, Rodriguez P, Garcia-Araez N, Mom RV, Tichelaar FD, Koper MTM (2011) Angew Chem Int Ed 50:6346CrossRefGoogle Scholar
  24. 24.
    Rodriguez P, Tichelaar FD, Koper MTM, Yanson AI (2011) J Am Chem Soc 133:17626CrossRefGoogle Scholar
  25. 25.
    Yanson AI, Antonov PV, Rodriguez P, Koper MTM (2013) Electrochim Acta doi. doi: 10.1016/j.electacta.2013.01.056 Google Scholar
  26. 26.
    Yanson AI, Antonov PV, Yanson YI, Koper MTM (2013) Electrochim Acta Submitted 87:1CrossRefGoogle Scholar
  27. 27.
    Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Science 316:732CrossRefGoogle Scholar
  28. 28.
    Hsu IJ, Esposito DV, Mahoney EG, Black A, Chen JGG (2011) J Power Sour 196:8307CrossRefGoogle Scholar
  29. 29.
    Koper MTM (2011) Nanoscale 3:2054CrossRefGoogle Scholar
  30. 30.
    Duca M, Koper MTM (2012) Energy Environ Sci 5:9726CrossRefGoogle Scholar
  31. 31.
    Ye S, Hattori H, Kita H (1992) Ber Bunsen-Ges Phys Chem 96:1884CrossRefGoogle Scholar
  32. 32.
    Gao YZ, Kita H, Hattori H (1994) Chem Lett 4:2093CrossRefGoogle Scholar
  33. 33.
    Vidal-Iglesias FJ, Solla-Gullon J, Feliu JM, Baltruschat H, Aldaz A (2006) J Electroanal Chem 588:331CrossRefGoogle Scholar
  34. 34.
    Vidal-Iglesias FJ, Solla-Gullon J, Montiel V, Feliu JM, Aldaz A (2005) J Phys Chem B 109:12914CrossRefGoogle Scholar
  35. 35.
    Vidal-Iglesias FJ, Garcia-Araez N, Montiel V, Feliu JM, Aldaz A (2003) Electrochem Commun 5:22CrossRefGoogle Scholar
  36. 36.
    Duca M, Figueiredo MC, Climent V, Rodriguez P, Feliu JM, Koper MTM (2011) J Am Chem Soc 133:10928CrossRefGoogle Scholar
  37. 37.
    Duca M, Cucarella MO, Rodriguez P, Koper MTM (2010) J Am Chem Soc 132:18042CrossRefGoogle Scholar
  38. 38.
    Lu LL, Yin GP, Tong YJ, Zhang Y, Gao YZ, Osawa M, Ye S (2010) J Electroanal Chem 642:82CrossRefGoogle Scholar
  39. 39.
    Lu LL, Yin GP, Wang ZB, Gao YZ (2009) Electrochem Commun 11:1596CrossRefGoogle Scholar
  40. 40.
    Lai SCS, Koper MTM (2008) Faraday Discuss 140:399CrossRefGoogle Scholar
  41. 41.
    Wonders AH, Housmans THM, Rosca V, Koper MTM (2006) J Appl Electrochem 36:1215CrossRefGoogle Scholar
  42. 42.
    Clavilier J, Faure R, Guinet G, Durand R (1980) J Electroanal Chem 107:205CrossRefGoogle Scholar
  43. 43.
    Climent V, Feliu JM (2011) J Solid State Electrochem 15:1297CrossRefGoogle Scholar
  44. 44.
    Clavilier J, Elachi K, Petit M, Rodes A, Zamakhchari MA (1990) J Electroanal Chem 295:333CrossRefGoogle Scholar
  45. 45.
    Solla-Gullon J, Montiel V, Aldaz A, Clavilier J (2003) J Electrochem Soc 150:104CrossRefGoogle Scholar
  46. 46.
    Kinge S, Urgeghe C, De Battisti A, Bonnemann H (2008) Appl Organomet Chem 22:49CrossRefGoogle Scholar
  47. 47.
    Gomez R, Llorca MJ, Feliu JM, Aldaz A (1992) J Electroanal Chem 340:349CrossRefGoogle Scholar
  48. 48.
    Rees NV, Compton RG (2011) Energy Environ Sci 4:1255CrossRefGoogle Scholar
  49. 49.
    Braunchweig B, Hibbitts D, Neurock M, Wieckowski A (2013) Catal Today 202:197CrossRefGoogle Scholar
  50. 50.
    Li H, Kwon Y, Kolb MJ, Calle-Vallejo F, Li Y, Koper MTM (2013) Chem Sus Chem 6:455CrossRefGoogle Scholar
  51. 51.
    P J Linstrom, W G Mallard NIST Chemistry WebBook,NIST Standard Reference Database Number 69, http://webbook.nist.gov. Accessed 18 Feb 2010

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Matteo Duca
    • 1
    • 2
  • Paramaconi Rodriguez
    • 1
    • 3
  • Alexei I. Yanson
    • 1
  • Marc T. M. Koper
    • 1
    Email author
  1. 1.Leiden Institute of Chemistry, Leiden UniversityLeidenThe Netherlands
  2. 2.Sorbonne Paris Cité, Laboratoire d’Electrochimie MoléculaireUnité Mixte de Recherche Université–CNRS No. 7591, Université Paris DiderotParis Cedex 13France
  3. 3.School of Chemistry, The University of BirminghamBirminghamUK

Personalised recommendations