Skip to main content
Log in

Modeling Methyl Chloride Photo Oxidation by Oxygen Species on TiO2(110)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We present the reaction pathways and potential energy landscapes for photo-oxidation of methyl chloride involving oxygen species on the rutile TiO2(110) surface. Bridging oxygen atoms native to the TiO2(110) surface prove insufficient as H acceptors in the reaction. Rather oxygen atoms or hydroxyl groups bound at terminal Ti sites in the Ti troughs are required to facilitate the photo-oxidation, which can proceed all the way to formaldehyde. In the calculations, a photo-generated hole in the TiO2 valence band is assumed, while the corresponding photo-electron is omitted from the models. This prohibits the electron–hole recombination and changes the photo oxidation reaction into a fictitious electronic ground state problem, tractable by density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515

    Article  CAS  Google Scholar 

  2. Diebold U (2003) Surf Sci Rep 48:53

    Article  CAS  Google Scholar 

  3. Linsebigler A, Lu G, Yates JT (1996) J Phys Chem 100:6631

    Article  CAS  Google Scholar 

  4. Nadeem AM, Muir JMR, Connelly KA, Adamson BT, Metson BJ, Idriss H (2011) Phys Chem Chem Phys 13:7637

    Article  CAS  Google Scholar 

  5. Shiraishi Y, Togawa Y, Tsukamoto D, Tanaka S, Hirai T (2012) ACS Catal 2:2475

    Article  CAS  Google Scholar 

  6. Wang Z-T, Deskins NA, Henderson MA, Lyubinetsky I (2012) Phys Rev Lett 109:266103

    Article  Google Scholar 

  7. Wendt S, Sprunger PT, Lira E, Madsen GKH, Li Z, Hansen J, Matthiesen J, Blekinge-Rasmussen A, Lægsgaard E, Hammer B, Besenbacher F (2008) Science 320:1755

    Article  CAS  Google Scholar 

  8. Henderson MA (2005) J Phys Chem B 109:12062

    Article  CAS  Google Scholar 

  9. Shen M, Henderson MA (2012) J Phys Chem C 116:18788

    Article  CAS  Google Scholar 

  10. Phillips KR, Jensen SC, Baron M, Li S-C, Friend CM (2013) J Am Chem Soc 135:574

    Article  CAS  Google Scholar 

  11. Lu G, Linsebigler A, Yates JT (1995) J Phys Chem 99:7626

    Article  CAS  Google Scholar 

  12. Scheiber P, Riss A, Schmid M, Varga P, Diebold U (2010) Phys Rev Lett 105:216101

    Article  Google Scholar 

  13. Petrik NG, Kimmel GA (2010) J Phys Chem Lett 1:1758

    Article  CAS  Google Scholar 

  14. Lira E, Hansen JØ, Huo P, Bechstein R, Galliker P, Lægsgaard E, Hammer B, Wendt S, Besenbacher F (2010) Surf Sci 604:1945

    Article  CAS  Google Scholar 

  15. Bikondoa O, Pang CL, Ithnin R, Muryn CA, Onishi H, Thornton G (2006) Nat Mater 5:189

    Article  CAS  Google Scholar 

  16. Matthiesen J, Wendt S, Hansen JØ, Madsen GKH, Lira E, Galliker P, Vestergaard EK, Schaub R, Lægsgaard E, Hammer B, Besenbacher F (2009) ACS Nano 3:517

    Article  CAS  Google Scholar 

  17. Yoshihara T, Katoh R, Furube A, Tamaki Y, Murai M, Hara K, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:3817

    Article  CAS  Google Scholar 

  18. Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735

    Article  CAS  Google Scholar 

  19. Henderson MA, Lyubinetsky I (2013) Chem Rev 113:4428

    Article  CAS  Google Scholar 

  20. Wanbayor R, Deák P, Frauenheim T, Ruangpornvisuti V (2011) J Chem Phys 134:104701

    Article  Google Scholar 

  21. Di Valentin C, Fittipaldi D (2013) J Phys Chem Lett 4:1901

    Article  CAS  Google Scholar 

  22. Chrétien S, Metiu H (2008) J Chem Phys 128:044714

    Article  Google Scholar 

  23. Martinez U, Hammer B (2011) J Chem Phys 134:194703

    Article  Google Scholar 

  24. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109

    Article  Google Scholar 

  25. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22:253202

    Article  CAS  Google Scholar 

  26. Wellendorff J, Lundgaard KT, Møgelhøj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Phys Rev B 85:235149

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  28. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  29. Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56

    Article  CAS  Google Scholar 

  30. Micic OI, Zhang Y, Cromack KR, Trifunac AD, Thurnauer MC (1993) J Phys Chem 97:7277

    Article  CAS  Google Scholar 

  31. Nakaoka Y, Nosaka Y (1997) J Photochem Photobiol A 110:299

    Article  CAS  Google Scholar 

  32. Deskins NA, Dupuis M (2009) J Phys Chem C 113:346

    Article  CAS  Google Scholar 

  33. Ji Y, Wang B, Luo Y (2012) J Phys Chem C 116:7863

    Article  CAS  Google Scholar 

  34. Zawadzki P, Jacobsen KW, Rossmeisl J (2011) Chem Phys Lett 506:42

    Article  CAS  Google Scholar 

  35. Di Valentin C, Selloni A (2011) J Phys Chem Lett 2:2223

    Article  CAS  Google Scholar 

  36. Stausholm-Moller J, Kristoffersen HH, Hinnemann B, Madsen GKH, Hammer B (2010) J Chem Phys 133:144708

    Article  Google Scholar 

  37. Iwaszuk A, Nolan M (2011) J Phys Condens Matter 23:334207

    Article  Google Scholar 

  38. Ghuman KK, Singh CV (2013) J Phys Condens Matter 25:085501

    Article  Google Scholar 

  39. Di Valentin C, Pacchioni G, Selloni A (2006) Phys Rev Lett 97:166803

    Article  Google Scholar 

Download references

Acknowledgments

We wish to congratulate J. K. Nørskov on the occasion of his 60th year anniversary, and one of us (BH) would like to express his gratitude for being introduced to the field of computational surface science and catalysis, for many fruitful collaborative projects and for steady support and inspiration. This work was supported by the Danish Research Councils, COST action CM1104, and Danish Center for Scientific Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørk Hammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristoffersen, H.H., Martinez, U. & Hammer, B. Modeling Methyl Chloride Photo Oxidation by Oxygen Species on TiO2(110). Top Catal 57, 171–176 (2014). https://doi.org/10.1007/s11244-013-0173-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0173-4

Keywords

Navigation