Skip to main content

Simulating Temperature Programmed Desorption of Oxygen on Pt(111) Using DFT Derived Coverage Dependent Desorption Barriers


The dissociative adsorption energy of oxygen on Pt(111) is known to be coverage dependent. Simple Redhead analysis of temperature programmed desorption (TPD) experiments that assumes a coverage independent desorption barrier can lead to errors in estimated properties such as desorption barriers and adsorption energies. A simple correction is to assume a linear coverage dependence of the desorption barrier, but there is usually no formal justification given for that functional form. More advanced TPD analysis methods that are suitable for determining coverage dependent adsorption parameters are limited by their need for large amounts of high quality, low noise data. We present a method to estimate the functional form of the coverage dependent desorption barrier from density functional theory calculations for use in analysis of TPD spectra. Density functional theory was employed to calculate the coverage dependence of the adsorption energy. Simulated TPD spectra were then produced by empirically scaling the DFT based adsorption energies utilizing the Brønstead–Evans–Polyani relationship between adsorption energies and desorption barriers. The resulting simulated spectra show better agreement with the experimental spectra than spectra predicted using barriers that are either coverage-independent or simply linearly dependent on coverage. The empirically derived scaling of the desorption barriers for Pt(111) is shown to be useful in predicting the low coverage desorption barriers for oxygen desorption from other metal surfaces, which showed reasonable agreement with the reported experimental values for those other metals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1 .

    Ajo HM, Ihm H, Moilanen DE, Campbell CT (2004) Calorimeter for adsorption energies of larger molecules on single crystal surfaces. Rev Sci Instrum 75(11):4471–4480

    CAS  Article  Google Scholar 

  2. 2.

    Allers KH, Pfnur H, Feulner P, Menzel D (1996) Angle and energy distributions of thermally desorbing oxygen from Pt(111): the influences of a dynamically variable activation barrier. Int J Res Phys Chem Chem Phys 197(Part 1–2):253–268

    CAS  Google Scholar 

  3. 3.

    Bare S, Griffiths K, Lennard W, Tang H (1995) Generation of atomic oxygen on Ag(111) And Ag(110) using NO2—a TPD, LEED, HREELS, XPS and NRA study. Surf Sci 342(1–3):185–198

    CAS  Article  Google Scholar 

  4. 4.

    Barteau M (1991) Linear free-energy relationships for C1-oxygenate decomposition on transition-metal surfaces. Catal Lett 8(2–4):175–184

    CAS  Article  Google Scholar 

  5. 5.

    Bligaard T, Nørskov J, Dahl S, Matthiesen J, Christensen C, Sehested J (2004) The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224(1):206–217

    CAS  Article  Google Scholar 

  6. 6.

    Campbell CT (1985) Atomic and molecular-oxygen adsorption on Ag(111). Surf Sci 157(1):43–60

    CAS  Article  Google Scholar 

  7. 7.

    Canning NDS, Outka D, Madix RJ (1984) The adsorption of oxygen on gold. Surf Sci 141(1):240–254

    CAS  Article  Google Scholar 

  8. 8.

    Conrad H, Ertl G, Koch J, Latta EE (1974) Adsorption of CO on Pd single-crystal surfaces. Surf Sci 43(2):462–480

    CAS  Article  Google Scholar 

  9. 9.

    Conrad H, Ertl G, Kuppers J, Latta EE (1977) Interaction of NO and O2 with Pd(111) surfaces part one. Surf Sci 65(1):235–244

    CAS  Article  Google Scholar 

  10. 10.

    Conrad H, Ertl G, Latta EE (1974) Adsorption of hydrogen on palladium single-crystal surfaces. Surf Sci 41(2):435–446

    Article  Google Scholar 

  11. 11.

    Cornish JCL, Avery NR (1990) Adsorption of N2, O2, N2O and NO on Ir(111) by EELS and TPD. Surf Sci 235(2–3):209–216

    CAS  Article  Google Scholar 

  12. 12.

    Dejong AM, Niemantsverdriet JW (1990) Thermal-desorption analysis—comparative test of 10 commonly applied procedures. Surf Sci 233(3):355–365

    CAS  Article  Google Scholar 

  13. 13.

    Devarajan SP, Hinojosa JA, Weaver JF (2008) STM study of high-coverage structures of atomic oxygen on Pt(111): p(2 × 1) and Pt oxide chain structures. Surf Sci 602(19):3116–3124

    CAS  Article  Google Scholar 

  14. 14.

    Dominik C (2010) The Org Mode 7 Reference Manual: Organize your life with GNU Emacs. Network Theory, UK

    Google Scholar 

  15. 15.

    Dumesic JA, Rudd DF, Aparicio LM, Rekoske (1993) The microkinetics of heterogeneous catalysis. American Chemical Society, Washington, DC

  16. 16.

    Fischer-Wolfarth JH, Hartmann J, Farmer JA, Flores-Camacho JM, Campbell CT, Schauermann S, Freund HJ (2011) An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts. Rev Sci Instrum 82:024102

    Google Scholar 

  17. 17.

    Getman RB, Schneider WF (2010) DFT-based coverage-dependent model of Pt-catalyzed NO oxidation. ChemCatChem 2(11):1450–1460

    CAS  Article  Google Scholar 

  18. 18.

    Getman RB, Xu Y, Schneider WF (2008) Thermodynamics of environment-dependent oxygen chemisorption on Pt(111). J Phys Chem C 112(26):9559–9572

    CAS  Article  Google Scholar 

  19. 19.

    Grabow LC, Hvolbæk B, Nørskov JK (2010) Understanding trends in catalytic activity: the effect of adsorbate–adsorbate interactions for co oxidation over transition metals. Top Catal 53(5–6):298–310

    CAS  Article  Google Scholar 

  20. 20.

    Groß A, Eichler A, Hafner J, Mehl MJ, Papaconstantopoulos DA (2003) Unified picture of the molecular adsorption process: O2/Pt(111). Surf Sci 539(1–3):L542–L548

    Article  Google Scholar 

  21. 21.

    Habenschaden E, Küppers J (1984) Evaluation of flash desorption spectra. Surf Sci 138(1):L147–L150

    CAS  Article  Google Scholar 

  22. 22.

    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59(11):7413–7421

    Article  Google Scholar 

  23. 23.

    Horvath JD, Gellman AJ (2002) Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. J Am Chem Soc 124(10):2384–92

    CAS  Article  Google Scholar 

  24. 24.

    Hunter JD (2007) Matplotlib: a 2d graphics environment. Comput Sci Eng 9(3):90–95

    Article  Google Scholar 

  25. 25.

    Ihm H, Ajo HM, Gottfried JM, Bera P, Campbell CT (2004) Calorimetric measurement of the heat of adsorption of benzene on Pt(111). J Phys Chem B 108(38):14627–14633

    Google Scholar 

  26. 26.

    Ivanov VP, Boreskov GK, Savchenko VI (1976) Chemisorption of oxygen on iridium(111) surface. Surf Sci 61(1):207–220

    CAS  Article  Google Scholar 

  27. 27.

    Jerdev DI, Kim J, Batzill M, Koel BE (2002) Evidence for slow oxygen exchange between multiple adsorption sites at high oxygen coverages on Pt(111). Surf Sci 498(1–2):L91–L96

    CAS  Article  Google Scholar 

  28. 28.

    Miller SD, Inoglu N, Kitchin JR (2011) Configurational correlations in the coverage dependent adsorption energies of oxygen atoms on late transition metal fcc(111) surfaces. J Chem Phys 134(10):104709

    Article  Google Scholar 

  29. 29.

    Miller SD, Kitchin JR (2009) Relating the coverage dependence of oxygen adsorption on Au and Pt fcc(111) surfaces through adsorbate-induced surface electronic structure effects. Surf Sci 603(5):794–801

    CAS  Article  Google Scholar 

  30. 30.

    Miller SD, Kitchin JR (2009) Uncertainty and figure selection for DFT based cluster expansions for oxygen adsorption on Au and Pt(111) surfaces. Mol Simul 35(10–11):920–927

    CAS  Article  Google Scholar 

  31. 31.

    Mudiyanselage K, Yi CW, Szanyi J (2009) Oxygen coverage dependence of NO oxidation on Pt(111). J Phys Chem C 113(14):5766–5776

    CAS  Article  Google Scholar 

  32. 32.

    Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30:244–247

    CAS  Article  Google Scholar 

  33. 33.

    Parker DH, Bartram ME, Koel BE (1989) Study of high coverages of atomic oxygen on the Pt(111) surface. Surf Sci 217(3):489–510

    CAS  Article  Google Scholar 

  34. 34.

    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Phys Rev B 45(23):13244–13249

    Google Scholar 

  35. 35.

    Peterlinz KA, Sibener SJ (1995) Absorption, adsorption, and desorption studies of the oxygen/Rh(111) system using O2, NO, and NO2. J Phys Chem A 99(9):2817–2825

    CAS  Article  Google Scholar 

  36. 36.

    Redhead PA, Hobson JP, Kornelsen EV (1962) Ultrahigh vacuum in small glass systems. Can J Phys 40(12):1814

    Article  Google Scholar 

  37. 37.

    Root TW, Schmidt LD, Fisher GB (1983) Adsorption and reaction of nitric-oxide and oxygen on Rh(111). Surf Sci 134(1):30–45

    CAS  Article  Google Scholar 

  38. 38.

    Saliba N, Parker DH, Koel BE (1998) Adsorption of oxygen on Au(111) by exposure to ozone. Surf Sci 410(2–3):270–282

    CAS  Article  Google Scholar 

  39. 39.

    Schulte E, Davison D (2011) Active documents with org-mode. Comput Sci Eng 13(3):66–73

    Article  Google Scholar 

  40. 40.

    Schulte E, Davison D, Dye T, Dominik C (2012) A multi-language computing environment for literate programming and reproducible research. J Stat Softw 46(3):1–24

    Article  Google Scholar 

  41. 41.

    Steininger H, Lehwald S, Ibach H (1982) Adsorption of oxygen on Pt(111). Surf Sci 123(1):1–17

    CAS  Article  Google Scholar 

  42. 42.

    Stuckless JT, Frei NA, Campbell CT (1998) A novel single-crystal adsorption calorimeter and additions for determining metal adsorption and adhesion energies. Rev Sci Instrum 69(6):2427–2438

    CAS  Article  Google Scholar 

  43. 43.

    Tang HR, Van der Ven A, Trout BL (2004) Phase diagram of oxygen adsorbed on platinum (111) by first-principles investigation. Phys Rev B 70(4):045,420

    Google Scholar 

  44. 44.

    Thiel PA, Yates JT, Weinberg WH (1979) Interaction of oxygen with the Rh(111) surface. Surf Sci 82(1):22–44

    CAS  Article  Google Scholar 

  45. 45.

    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895

    Article  Google Scholar 

  46. 46.

    Wartnaby CE, Stuck A, Yee YY, King DA (1996) Microcalorimetric heats of adsorption for CO, NO, and oxygen on Pt(110). J Phys Chem A 100(30):12483–12488

    Google Scholar 

  47. 47.

    Weaver JF, Chen JJ, Gerrard AL (2005) Oxidation of Pt(111) by gas-phase oxygen atoms. Surf Sci 592(1–3):83–103

    CAS  Article  Google Scholar 

  48. 48.

    Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt–Co and Pt–Fe alloys. J Am Chem Soc 126(14):4717–4725

    CAS  Article  Google Scholar 

  49. 49.

    Zhdanov VP, Kasemo B (1998) Simulation of oxygen desorption from Pt(111). Surf Sci 415(3):403–410

    CAS  Article  Google Scholar 

  50. 50.

    Zheng G, Altman EI (2000) The oxidation of Pd(111). Surf Sci 462(1–3):151–168

    CAS  Article  Google Scholar 

Download references


JRK gratefully acknowledges support from the DOE Office of Science Early Career Research Program (DE-SC0004031).

Author information



Corresponding author

Correspondence to John R. Kitchin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 11424 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miller, S.D., Pushkarev, V.V., Gellman, A.J. et al. Simulating Temperature Programmed Desorption of Oxygen on Pt(111) Using DFT Derived Coverage Dependent Desorption Barriers. Top Catal 57, 106–117 (2014).

Download citation


  • Coverage dependence
  • Temperature programmed desorption
  • Density functional theory
  • Late transition metals