Skip to main content
Log in

Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The structure–reactivity relationships of model BaO-based NOx storage/reduction catalysts were investigated under well controlled experimental conditions using surface science analysis techniques. The reactivity of BaO toward NO2, CO2, and H2O was studied as a function of BaO layer thickness [0 < θBaO < 30 monolayer (ML)], sample temperature, reactant partial pressure, and the nature of the substrate the NOx storage material was deposited onto. Most of the efforts focused on understanding the mechanism of NO2 storage either on pure BaO, or on BaO exposed to CO2 or H2O prior to NO2 exposure. The interaction of NO2 with a pure BaO film results in the initial formation of nitrite/nitrate ion pairs by a cooperative adsorption mechanism predicted by prior theoretical calculations. The nitrites are then further oxidized to nitrates to produce a fully nitrated surface. The mechanism of NO2 uptake on thin BaO films (<4 ML), BaO clusters (<1 ML) and mixed BaO/Al2O3 layers are fundamentally different: in these systems initially nitrites are formed only, and then converted to nitrates at longer NO2 exposure times. These results clarify the contradicting mechanisms presented in prior studies in the literature. After the formation of a nitrate layer the further conversion of the underlying BaO is slow, and strongly depends on both the sample temperature and the NO2 partial pressure. At 300 K sample temperature amorphous Ba(NO3)2 forms that then can be converted to crystalline nitrates at elevated temperatures. The reaction between BaO and H2O is facile, a series of Ba(OH)2 phases form under the temperature and H2O partial pressure regimes studied. Both amorphous and crystalline Ba(OH)2 phases react with NO2, and initially form nitrites only that can be converted to nitrates. The NO2 adsorption capacities of BaO and Ba(OH)2 are identical, i.e., both of these phases can completely be converted to Ba(NO3)2. In contrast, the interaction of CO2 with pure BaO results in the formation of a BaCO3 layer that prevents to complete carbonation of the entire BaO film under the experimental conditions applied in these studies. However, these “carbonated” BaO layers readily react with NO2, and at elevated sample temperature even the carbonate layer is converted to nitrates. The importance of the metal oxide/metal interface in the chemistry on NOx storage-reduction catalysts was studied on BaO(<1 ML)/Pt(111) reverse model catalysts. In comparison to the clean Pt(111), new oxygen adsorption phases were identified on the BaO/Pt(111) surface that can be associated with oxygen atoms strongly adsorbed on Pt atoms at the peripheries of BaO particles. A simple kinetic model developed helped explain the observed thermal desorption results. The role of the oxide/metal interface in the reduction of Ba(NO3)2 was also substantiated in experiments where Ba(NO3)2/O/Pt(111) samples were exposed to CO at elevated sample temperature. The catalytic decomposition of the nitrate phase occurred as soon as metal sites opened up by the removal of interfacial oxygen via CO oxidation from the O/Pt(111) surface. The temperature for catalytic nitrate reduction was found to be significantly lower than the onset temperature of thermal nitrate decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Scheme 2
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Granger P, Parvulescu VI (2011) Chem Rev 111:3155

    Article  CAS  Google Scholar 

  2. Matsumoto S (2000) CATTECH 4:102

    Article  CAS  Google Scholar 

  3. Shelef M (1995) Chem Rev 95:209 (and references therein)

    Article  CAS  Google Scholar 

  4. Hoard J, Panov A, SAE Technical Paper 2001-01-3512

  5. Tonkyn RG, Yoon S, Barlow SE, Panov A, Kolwaite A, Barmer ML (2000) SAE 1:2869

    Google Scholar 

  6. Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K (1996) Catal Today 27:63

    Article  CAS  Google Scholar 

  7. Epling WS, Parks JE, Campbell GC, Yezerets A, Currier NW, Campbell LE (2004) Catal Today 96:21 (and references therein)

    Article  CAS  Google Scholar 

  8. Stone P, Ishii M, Bowker M (2003) Surf Sci 537:179

    Article  CAS  Google Scholar 

  9. Bowker M, Stone P, Smith R, Fourre E, Ishii M, Leeuw NH (1973) Surf Sci 2006:600

    Google Scholar 

  10. Bowker M, Cristofolini M, Hall M, Fourre E, Grillo F, McCormack E, Stone P, Ishii M (2007) Top Catal 42:341

    Article  Google Scholar 

  11. Bowker M (2008) Chem Soc Rev 37:2204

    Article  CAS  Google Scholar 

  12. Mudiyanselage K, Yi CW, Szanyi J (2009) Langmuir 26:10820

    Article  Google Scholar 

  13. Mudiyanselage K, Yi CW, Szanyi J (2010) J Phys Chem C 114:16955

    Article  CAS  Google Scholar 

  14. Mudiyanselage K, Mei D, Yi CW, Weaver JF, Szanyi J (2010) J Phys Chem C 114:20195

    Article  CAS  Google Scholar 

  15. Mudiyanselage K, Weaver JF, Szanyi J (2011) J Phys Chem C 115:5903

    Article  CAS  Google Scholar 

  16. Mudiyanselage K, Yi CW, Szanyi J (2011) Phys Chem Chem Phys 13:11016

    Article  CAS  Google Scholar 

  17. Mudiyanselage K, Szanyi J (2012) Catal Today 181:116

    Article  CAS  Google Scholar 

  18. Tsami A, Grillo F, Bowker M, Nix RM (2006) Surf Sci 600:3403

    Article  CAS  Google Scholar 

  19. Schmitz P, Baird RJ (2002) J Phys Chem B 106:4172

    Article  CAS  Google Scholar 

  20. Ozensoy E, Szanyi J, Peden CHF (2005) J Phys Chem B 109:3431

    Article  CAS  Google Scholar 

  21. Ozensoy E, Peden CHF, Szanyi J (2005) J Phys Chem B 109:15977

    Article  CAS  Google Scholar 

  22. Ozensoy E, Peden CHF, Szanyi J (2006) J Phys Chem B 110:17001

    Article  CAS  Google Scholar 

  23. Ozensoy E, Peden CHF, Szanyi J (2006) J Phys Chem B 110:17009

    Article  CAS  Google Scholar 

  24. Ozensoy E, Peden CHF, Szanyi J (2006) J Catal 243:149

    Article  CAS  Google Scholar 

  25. Desikusumastuti A, Laurin M, Happel M, Qin Z, Shaikhutdinov S, Libuda J (2008) Catal Lett 121:311

    Article  CAS  Google Scholar 

  26. Desikusumastuti A, Staudt T, Grönbeck H, Libuda J (2008) J Catal 255:127

    Article  CAS  Google Scholar 

  27. Desikusumastuti A, Happel M, Dumbuya K, Staudt T, Laurin M, Gottfried JM, Steinruck HP, Libuda J (2008) J Phys Chem C 112:6477

    Article  CAS  Google Scholar 

  28. Staudt T, Desikusumastuti A, Happel M, Vesselli E, Baraldi A, Gardonio S, Lizzit S, Rohr F, Libuda J (2008) J Phys Chem C 112:9835

    Article  CAS  Google Scholar 

  29. Vines F, Desikusumastuti A, Staudt T, Gorling A, Libuda J, Neyman KM (2008) J Phys Chem C 112:16539

    Article  CAS  Google Scholar 

  30. Desikusumastuti A, Staudt T, Happel M, Laurin M, Libuda J (2008) J Catal 260:315

    Article  CAS  Google Scholar 

  31. Desikusumastuti A, Qin Z, Staudt T, Happel M, Lykhach Y, Laurin M, Shaikhutdinov S, Libuda J (2009) Surf Sci 603:9

    Article  Google Scholar 

  32. Desikusumastuti A, Schernich S, Happel M, Sobota M, Laurin M, Libuda J (2009) ChemCatChem 1:318

    Article  CAS  Google Scholar 

  33. Desikusumastuti A, Staudt T, Qin Z, Happel M, Laurin M, Lykhach Y, Shakhutdinov S, Rohr F, Libuda J (2009) Chemphyschem 9:2191

    Article  Google Scholar 

  34. Yi CW, Kwak JH, Peden CHF, Wang C, Szanyi J (2007) J Phys Chem C 111:14942

    Article  CAS  Google Scholar 

  35. Yi CW, Kwak JH, Szanyi J (2007) J Phys Chem C 111:15299

    Article  CAS  Google Scholar 

  36. Kwak JH, Mei D, Yi CW, Peden CHF, Szanyi J (2009) J Catal 261:17

    Article  CAS  Google Scholar 

  37. Yi CW, Szanyi J (2009) J Phys Chem C 113:716

    Article  CAS  Google Scholar 

  38. Yi CW, Szanyi J (2009) J Phys Chem C 113:2134

    Article  CAS  Google Scholar 

  39. Yi CW, Szanyi J (2009) J Phys Chem C 113:15692

    Article  CAS  Google Scholar 

  40. Desikusumastuti A, Qin Z, Happel M, Staudt T, Lykhach Y, Laurin M, Rohr F, Shaikhutdinov S, Libuda J (2009) Phys Chem Chem Phys 11:2514

    Article  CAS  Google Scholar 

  41. Schneider WF (2004) J Phys Chem B 108:273

    Article  CAS  Google Scholar 

  42. Schneider WF, Hass KC, Miletic M, Gland JL (2002) J Phys Chem B 106:7405

    Article  CAS  Google Scholar 

  43. Broqvist P, Grönbeck H, Fridell E, Panas I (2004) Catal Today 96:71

    Article  CAS  Google Scholar 

  44. Broqvist P, Panas I, Gronbeck H (2005) J Phys Chem B 109:15410

    Article  CAS  Google Scholar 

  45. Szanyi J, Kwak JH, Kim DH, Wang X, Chimentao R, Hanson J, Epling WS, Peden CHF (2007) J Phys Chem C 111:4678

    Article  CAS  Google Scholar 

  46. Lutz HD, Eckers W, Schneider G, Haeuseler H (1981) Spectrochim Acta A 37:561

    Article  Google Scholar 

  47. Maneva-Petrova M, Nikolova D (1985) Thermochim Acta 92:287

    Article  CAS  Google Scholar 

  48. Cordfunke EHP, Booij AS, Konings RJM, van der Laan RR, Smit Green VM, van Vlaanderen P (1996) Thermochim Acta 273:1

    Article  CAS  Google Scholar 

  49. Friedrich A, Kunz M, Suard E (1996) Acta Crystallogr A 57:747

    Article  Google Scholar 

  50. Gland JL (1980) Surf Sci 93:487

    Article  CAS  Google Scholar 

  51. Gland JL, Sexton BA (1980) Surf Sci 94:355

    Article  CAS  Google Scholar 

  52. Materer N, Starke U, Barbieri A, Doll R, Heinz K, Van Hove MA, Somorjai GA (1995) Surf Sci 325:207

    Article  CAS  Google Scholar 

  53. Steininger H, Lehwald S, Ibach H (1982) Surf Sci 123:1

    Article  CAS  Google Scholar 

  54. Weaver JF, Chen J, Gerrard AL (2005) Surf Sci 592:83

    Article  CAS  Google Scholar 

  55. Gerrard AL, Weaver JF (2005) J Chem Phys 123:224703

    Article  Google Scholar 

  56. James D, Fourre E, Ishii M, Bowker M (2003) Appl Catal B 45:147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the initial work on model NOx storage system by Prof. Emrah Ozensoy, and the helpful discussions with Dr. Charles H.F. Peden. We gratefully acknowledge the UD Department of Energy (DOE), Office of Science, Division of Chemical Sciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national user facility sponsored by the DOE Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. The authors acknowledge the many contributions of Prof. D.W. Goodman to the field of surface science in automotive catalysis. His fundamental studies on CO oxidation and CO + NO reactions on noble metal surfaces formed the foundation of our understanding of three-way catalysis. Some of us (J.Sz. and CW.Y.) were fortunate enough to be mentored by Wayne, and his contagious enthusiasm with which he approached the everyday challenges of life in a surface science lab will always stay with us. His scientific insights and intuitions, guidance, enthusiasm, friendship and wonderful humor are greatly missed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Szanyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szanyi, J., Yi, C.W., Mudiyanselage, K. et al. Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials. Top Catal 56, 1420–1440 (2013). https://doi.org/10.1007/s11244-013-0152-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0152-9

Keywords

Navigation