Skip to main content
Log in

Spill-Over Effects on Bimetallic Pt/Ru(0001) Surfaces

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The concept of spill-over of adsorbed species has a long tradition in Heterogeneous Catalysis and has been explored also for adsorption on bimetallic surfaces, in particular by the Goodman group. In the present paper, we report results of a comprehensive temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy study on spill-over effects in the adsorption and desorption of CO on structurally well defined bimetallic Pt/Ru(0001) surfaces, where part of the substrate is covered by monolayer Pt islands. While upon adsorption at 90 K, the mobility of COad molecules on the surface is very limited, it is activated when the adlayer is annealed to 150 K or, more directly, if CO exposure is done at 150 K or higher temperatures. This enables diffusion of COad molecules to the Pt free Ru(0001) areas, even at local COad coverages which preclude further adsorption from the gas phase on the Ru parts of the surface. Spill-over processes are shown to have significant impact on the TPD spectra; furthermore they provide an additional adsorption channel for adsorption on the bare Ru(0001) areas, allowing uptake of CO at local coverages where adsorption from the gas phase is precluded. This indicates that the apparent CO saturation coverage of 0.68 ML determined for direct adsorption on Ru(0001) under UHV conditions is limited by kinetics rather than thermodynamics. The data are discussed in comparison with results and interpretations in earlier studies, which indicate that these effects are not limited to the Pt/Ru(0001) surface, but may be found on a wide range of bimetallic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sinfelt JH, Lucchesi PJ (1963) J Am Chem Soc 85:3365–3367

    Article  CAS  Google Scholar 

  2. Conner WC, Pajonk GM, Teichner SJ (1986) Adv Catal 34:1–79

    CAS  Google Scholar 

  3. Pajonk GM (1997) Factors influencing catalytic action–spillover effects. In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. VCH-Wiley, Weinheim, pp 1064–1077

    Google Scholar 

  4. Vickerman JC, Christmann K, Ertl G (1981) J Catal 71:175–191

    Article  CAS  Google Scholar 

  5. Houston JE, Peden CHF, Blair DS, Goodman DW (1986) Surf Sci 167:427–436

    Article  CAS  Google Scholar 

  6. Paul J, Hoffmann FM (1986) Surf Sci 172:151–173

    Article  CAS  Google Scholar 

  7. Hoffmann FM, Paul J (1987) J Chem Phys 86:2990–2996

    Article  CAS  Google Scholar 

  8. Hoffmann FM, Paul J (1987) J Chem Phys 87:1857–1863

    Article  CAS  Google Scholar 

  9. Kuhn WK, He J-W, Goodman DW (1990) Chem Phys Lett 172:331–334

    Article  CAS  Google Scholar 

  10. He J-W, Kuhn WK, Goodman DW (1991) J Phys Chem 95:5220–5225

    Article  CAS  Google Scholar 

  11. He J-W, Kuhn WK, Leung L-WH, Goodman DW (1991) J Vac Sci Technol A 9:1742–1746

    Article  CAS  Google Scholar 

  12. Rodriguez JA, Goodman DW (1991) J Phys Chem 95:4196–4206

    Article  CAS  Google Scholar 

  13. Jiang X, Goodman DW (1991) Surf Sci 255:1–11

    Article  CAS  Google Scholar 

  14. Estrada CA, He J-W, Goodman DW (1992) J Vac Sci Technol A 10:2347–2350

    Article  CAS  Google Scholar 

  15. Schlapka A, Käsberger U, Menzel D, Jakob P (2002) Surf Sci 502/503:129–135

    Article  Google Scholar 

  16. Jakob P, Schlapka A (2007) Surf Sci 601:3556–3568

    Article  CAS  Google Scholar 

  17. Kuhn WK, Szanyi J, Goodman DW (1992) Surf Sci 274:L611–L618

    Article  CAS  Google Scholar 

  18. Pfnür H, Feulner P, Menzel D (1983) J Chem Phys 79:4613–4623

    Article  Google Scholar 

  19. Hartmann H, Diemant T, Bansmann J, Behm RJ (2012) Phys Chem Chem Phys 14:10919–10934

    Article  CAS  Google Scholar 

  20. Rauscher H, Hager T, Diemant T, Hoster H, Buatier de Mongeot F, Behm RJ (2007) Surf Sci 601:4608–4619

    Article  CAS  Google Scholar 

  21. Smentkowski VS, Yates JT Jr (1989) J Vac Sci Technol A 7:3325–3328

    Article  CAS  Google Scholar 

  22. Buatier de Mongeot F, Scherer M, Gleich B, Kopatzki E, Behm RJ (1998) Surf Sci 411:249–262

    Article  CAS  Google Scholar 

  23. Payne SH, McEwen J-S, Kreuzer HJ, Menzel D (2005) Surf Sci 594:240–262

    Article  CAS  Google Scholar 

  24. Loveless B, Buda C, Neurock M, Iglesia E (2013) J Am Chem Soc 135:6107–6121

    Article  CAS  Google Scholar 

  25. Hartmann H, Diemant T, Bansmann J, Behm RJ (2009) Surf Sci 603:1456–1466

    Article  CAS  Google Scholar 

  26. Kneitz S, Gemeinhardt J, Steinrück HP (1999) Surf Sci 440:307–320

    Article  CAS  Google Scholar 

  27. Schlapka A, Lischka M, Gross A, Käsberger U, Jakob P (2003) Phys Rev Lett 91:016101

    Article  CAS  Google Scholar 

  28. Diemant T, Bergbreiter A, Bansmann J, Hoster HE, Behm RJ (2010) ChemPhysChem 11:3123–3132

    Article  CAS  Google Scholar 

  29. Pfnür H, Menzel D, Hoffmann FM, Ortega A, Bradshaw AM (1980) Surf Sci 93:431–452

    Article  Google Scholar 

  30. Pfnür H, Menzel D (1983) J Chem Phys 79:2400–2410

    Article  Google Scholar 

  31. Chen R, Chen Z, Ma B, Hao X, Kapur N, Hyun J, Cho K, Shan B (2012) Comput Theoret Chem 987:77–83

    Article  CAS  Google Scholar 

  32. Steckel JA, Eichler A, Hafner J (2003) Phys Rev B 68:085416

    Article  Google Scholar 

  33. Rupprechter G, Dellwig T, Unterhalt H, Freund H-J (2001) Top Catal 15:19–26

    Article  CAS  Google Scholar 

  34. Pfnür H, Feulner P, Engelhardt HA, Menzel D (1978) Chem Phys Lett 59:481–486

    Article  Google Scholar 

  35. Goodman DW, Peden CHF (1985) J Catal 95:321–324

    Article  CAS  Google Scholar 

  36. Starr DE, Bluhm H (2013) Surf Sci 608:241–248

    Article  CAS  Google Scholar 

  37. Rupprechter G (2004) Annu Rep Prog Chem Sect C 100:237–311

    Article  CAS  Google Scholar 

  38. Riedmüller B, Ciobîca IM, Papageorgopoulos DC, Berenbak B, van Santen RA, Kleyn AW (2000) Surf Sci 465:347–360

    Article  Google Scholar 

  39. Bradshaw AM (1979) Surf Sci 80:215–225

    Article  CAS  Google Scholar 

  40. Bradshaw AM, Scheffler M (1979) J Vac Sci Technol 16:447–454

    Article  CAS  Google Scholar 

  41. Persson BNJ (1990) J Chem Phys 92:5034–5046

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Baden-Württemberg Stiftung, via the Competence Network ‘Functional Nanostructures’, and by the Deutsche Forschungsgemeinschaft, via the Research Group 1376 (Be 1201-18/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Behm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, H., Diemant, T. & Behm, R.J. Spill-Over Effects on Bimetallic Pt/Ru(0001) Surfaces. Top Catal 56, 1333–1344 (2013). https://doi.org/10.1007/s11244-013-0137-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0137-8

Keywords

Navigation