Skip to main content
Log in

The Dynamic Roles of Interstitial and Surface Defects on Oxidation and Reduction Reactions on Titania

  • OriginalPaper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Defect sites in titania have a substantial effect on many thermal and photochemical reactions. Three common types of defects are titanium interstitials, oxygen vacancies and oxygen adatoms—all of which can react with organic molecules adsorbed on the surface. We look broadly at thermal reduction and photochemical oxidation reactions of oxygenates. In particular, we focus on the reductive coupling of benzaldehyde, the photo-oxidation of butyrophenone, the photostability of benzoic acid, and the photo-oxidative coupling of methanol to methyl formate. Methods used include temperature programmed reaction spectroscopy, scanning tunneling microscopy, and density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu MC, Corneille JS, Estrada CA, He JW, Goodman DW (1992) Chem Phys Lett 182:472

    Article  Google Scholar 

  2. Wu MC, Estrada CA, Corneille JS, Goodman DW (1992) J Chem Phys 96:3892

    Article  CAS  Google Scholar 

  3. He JW, Xu X, Corneille JS, Goodman DW (1992) Surf Sci 279:119

    Article  CAS  Google Scholar 

  4. Kumar D, Chen MS, Goodman DW (2006) Thin Solid Films 515:1475

    Article  CAS  Google Scholar 

  5. Chen M, Goodman DW (2008) Chem Soc Rev 37:1860

    Article  CAS  Google Scholar 

  6. O’Regan B, Grätzel M (1991) Nature 353:737

    Article  Google Scholar 

  7. Mor GK, Carvalho MA, Varghese OK (2004) J Mater Res 19:628

    Article  CAS  Google Scholar 

  8. Chen C, Nanayakkara CE, Grassian YH (2012) Chem Rev 112:5919

    Article  CAS  Google Scholar 

  9. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  Google Scholar 

  10. Khomenko VM, Langer K, Rager H, Fett A (1998) Phys Chem Miner 25:338

    Article  CAS  Google Scholar 

  11. Onda K, Li B, Zhao J, Jordan KD, Yang J, Petek H (2005) Science 308:1154

    Article  CAS  Google Scholar 

  12. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M (2006) J Am Chem Soc 128:416

    Article  CAS  Google Scholar 

  13. Lira E, Huo P, Hansen JØ, Rieboldt F, Bechstein R, Wei Y, Streber R, Porsgaard S, Li S, Lægsgaard E, Wendt S, Besenbacher F (2012) Catal Today 182:25

    Article  CAS  Google Scholar 

  14. Henderson MA (2011) Surf Sci Rep 66:185

    Article  CAS  Google Scholar 

  15. Wendt S, Sprunger PT, Lira E, Madsen GKH, Li Z, Hansen JØ, Matthiesen J, Blekinge-Rasmussen A, Laegsgaard E, Hammer B, Besenbacher F (2008) Science 320:1755

    Article  CAS  Google Scholar 

  16. Göpel W, Anderson JA, Frankel D, Jaehnig M, Phillips K, Schäfer JA, Rocker G (1984) Surf Sci 139:333

    Article  Google Scholar 

  17. Jensen SC, Haubrich J, Shank A, Friend CM (2011) Chem Eur J 17:8309

    Article  CAS  Google Scholar 

  18. Henderson MA, Otero-Tapia S, Castro ME (1999) Faraday Discuss 114:313

    Article  CAS  Google Scholar 

  19. Henderson MA (1997) J Phys Chem B 101:221

    Article  CAS  Google Scholar 

  20. Linsebigler A, Lu G, Yates JT (1995) J Chem Phys 103:9438

    Article  CAS  Google Scholar 

  21. Rodriguez JA, Jirsak T, Liu G, Hrbek J, Dvorak J, Maiti A (2001) J Am Chem Soc 123:9597

    Article  CAS  Google Scholar 

  22. Schaub R, Thostrup P, Lopez N, Laegsgaard E, Stensgaard I, Nørskov J, Besenbacher F (2001) Phys Rev Lett 87:266104

    Article  CAS  Google Scholar 

  23. Epling W, Peden C, Henderson M, Diebold U (1998) Surf Sci 412:333

    Article  Google Scholar 

  24. Wang Z-T, Deskins NA, Henderson MA, Lyubinetsky I (2012) Phys Rev Lett 109:266103

    Article  Google Scholar 

  25. Papageorgiou AC, Beglitis NS, Pang CL, Teobaldi G, Cabailh G, Chen Q, Fisher AJ, Hofer WA, Thornton G (2010) PNAS 107:2391

    Article  Google Scholar 

  26. Benz L, Haubrich J, Jensen SC, Friend CM (2011) ACS Nano 5:834

    Article  CAS  Google Scholar 

  27. Haubrich J, Kaxiras E, Friend CM (2011) Chem Eur J 17:4496

    Article  CAS  Google Scholar 

  28. He Y, Dulub O, Cheng H, Selloni A, Diebold U (2009) Phys Rev Lett 102:106105

    Article  Google Scholar 

  29. Bennett RA, Stone P, Smith RD, Bowker M (2000) Surf Sci 454–456:390

    Article  Google Scholar 

  30. Du Y, Deskins NA, Zhang Z, Dohnálek Z, Dupuis M, Lyubinetsky I (2010) Phys Chem Chem Phys 12:6337

    Article  CAS  Google Scholar 

  31. Onda K, Li B, Petek H (2004) Phys Rev B 70:045415

    Article  Google Scholar 

  32. Tao J, Luttrell T, Batzill M (2011) Nature Chem 3:296

    Article  CAS  Google Scholar 

  33. Idriss H, Pierce KG, Barteau MA (1994) J Am Chem Soc 116:3063

    Article  CAS  Google Scholar 

  34. Benz L, Haubrich J, Quiller RG, Jensen SC, Friend CM (2009) J Am Chem Soc 131:15026

    Article  CAS  Google Scholar 

  35. Landis EC, Jensen SC, Phillips KR, Friend CM (2012) J Phys Chem C 116:21508

    Article  CAS  Google Scholar 

  36. Henderson MA (2005) J Phys Chem B 109:12062

    Article  CAS  Google Scholar 

  37. Jensen SC, Phillips KR, Baron M, Landis EC, Friend CM (2013) Phys Chem Chem Phys 15(14):5193

    Article  CAS  Google Scholar 

  38. Henderson MA (2008) Surf Sci 602:3188

    Article  CAS  Google Scholar 

  39. Shen M, Henderson MA (2011) J Phys Chem Lett 2:2707

    Article  CAS  Google Scholar 

  40. Nadeem AM, Muir JMR, Connelly KA, Adamson BT, Metson BJ, Idriss H (2011) Phys Chem Chem Phys 13:7637

    Article  CAS  Google Scholar 

  41. Zehr RT, Henderson MA (2008) Surf Sci 602:2238

    Article  CAS  Google Scholar 

  42. Du Y, Deskins NA, Zhang Z, Dohnálek Z, Dupuis M, Lyubinetsky I (2009) Phys Rev Lett 102:096102

    Article  CAS  Google Scholar 

  43. Deskins NA, Rousseau R, Dupuis M (2010) J Phys Chem C 114:5891

    Article  CAS  Google Scholar 

  44. Shen M, Acharya DP, Dohnálek Z, Henderson MA (2012) J Phys Chem C 116:25465

    Article  CAS  Google Scholar 

  45. Zhou C, Ren Z, Tan S, Ma Z, Mao X, Dai D, Fan H, Yang X, LaRue J, Cooper R, Wodtke AM, Wang Z, Li Z, Wang B, Yang J, Hou J (2010) Chem Sci 1:575

    Article  CAS  Google Scholar 

  46. Matthiesen J, Wendt S, Hansen JØ, Madsen GKH, Lira E, Galliker P, Vestergaard EK, Schaub R, Lægsgaard E, Hammer B, Besenbacher F (2009) ACS Nano 3:517

    Article  CAS  Google Scholar 

  47. Du Y, Deskins NA, Zhang Z, Dohnálek Z, Dupuis M, Lyubinetsky I (2010) J Phys Chem C 114:17080

    Article  CAS  Google Scholar 

  48. Phillips KR, Jensen SC, Baron M, Li S-C, Friend CM (2013) J Am Chem Soc 135:574

    Article  CAS  Google Scholar 

  49. Shen M, Henderson MA (2012) J Phys Chem C 116:18788

    Article  CAS  Google Scholar 

  50. Guo Q, Xu C, Ren Z, Yang W, Ma Z, Dai D, Fan H, Minton TK, Yang X (2012) J Am Chem Soc 134:13366

    Article  CAS  Google Scholar 

  51. Henderson MA, Deskins NA, Zehr RT, Dupuis M (2011) J Catal 279:205

    Article  CAS  Google Scholar 

  52. da Silva G, Bozzelli JW (2006) J Phys Chem A 110:13058

    Article  CAS  Google Scholar 

  53. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255

    Article  CAS  Google Scholar 

  54. Matus MH, Nguyen MT, Dixon DA (2007) J Phys Chem A 111:113

    Article  CAS  Google Scholar 

  55. Henderson MA (2004) J Phys Chem B 108:18932

    Article  CAS  Google Scholar 

  56. Jensen SC, Shank A, Madix RJ, Friend CM (2012) ACS Nano 6:2925

    Article  CAS  Google Scholar 

  57. Diau E, Kötting C, Zewail AH (2001) ChemPhysChem 2:273

    Article  CAS  Google Scholar 

  58. De Feyter S, Diau E, Zewail AH (2000) Angew Chem 112:266

    Article  Google Scholar 

  59. He H-Y, Fang W-H, Phillips DL (2004) J Phys Chem A 108:5386

    Article  CAS  Google Scholar 

  60. Fujishima A, Zhang X, Tryk D (2008) Surf Sci Rep 63:515

    Article  CAS  Google Scholar 

  61. Guo Q, Cocks I, Williams EM (1997) J Chem Phys 106:2924

    Article  CAS  Google Scholar 

  62. Henderson MA, White JM, Uetsuka H, Onishi H (2003) J Am Chem Soc 125:14974

    Article  CAS  Google Scholar 

  63. White JM, Szanyi J, Henderson MA (2004) J Phys Chem B 108:3592

    Article  CAS  Google Scholar 

  64. Tao J, Luttrell T, Bylsma J, Batzill M (2011) J Phys Chem C 115:3434

    Article  CAS  Google Scholar 

  65. Qiu H, Idriss H, Wang Y, Wöll C (2008) J Phys Chem C 112:9828

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia M. Friend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, S.C., Friend, C.M. The Dynamic Roles of Interstitial and Surface Defects on Oxidation and Reduction Reactions on Titania. Top Catal 56, 1377–1388 (2013). https://doi.org/10.1007/s11244-013-0135-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0135-x

Keywords

Navigation