Skip to main content
Log in

Cyclic Lean Reduction of NO by CO in Excess H2O on Pt–Rh/Ba/Al2O3: Elucidating Mechanistic Features and Catalyst Performance

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This study provides insight into the mechanistic and performance features of the cyclic reduction of NOx by CO in the presence and absence of excess water on a Pt–Rh/Ba/Al2O3 NOx storage and reduction catalyst. At low temperatures (150–200 °C), CO is ineffective in reducing NOx due to self-inhibition while at temperatures exceeding 200 °C, CO effectively reduces NOx to main product N2 (selectivity >70 %) and byproduct N2O. The addition of H2O at these temperatures has a significant promoting effect on NOx conversion while leading to a slight drop in the CO conversion, indicating a more efficient and selective lean reduction process. The appearance of NH3 as a product is attributed either to isocyanate (NCO) hydrolysis and/or reduction of NOx by H2 formed by the water gas shift chemistry. After the switch from the rich to lean phase, second maxima are observed in the N2O and CO2 concentrations versus time, in addition to the maxima observed during the rich phase. These and other product evolution trends provide evidence for the involvement of NCOs as important intermediates, formed during the CO reduction of NO on the precious metal components, followed by their spillover to the storage component. The reversible storage of the NCOs on the Al2O3 and BaO and their reactivity appears to be an important pathway during cyclic operation on Pt–Rh/Ba/Al2O3 catalyst. In the absence of water the NCOs are not completely reacted away during the rich phase, which leads to their reaction with NO and O2 upon switching to the subsequent lean phase, as evidenced by the evolution of N2, N2O and CO2. In contrast, negligible product evolution is observed during the lean phase in the presence of water. This is consistent with a rapid hydrolysis of NCOs to NH3, which results in a deeper regeneration of the catalyst due in part to the reaction of the NH3 with stored NOx. The data reveal more efficient utilization of CO for reducing NOx in the presence of water which further underscores the NCO mechanism. Phenomenological pathways based on the data are proposed that describes the cyclic reduction of NOx by CO under dry and wet conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ozkan US, Cai YP, Kumthekar MW, Zhang LP (1993) J Catal 142:182–197

    Article  CAS  Google Scholar 

  2. Ozkan US, Cai YP, Kumthekar MW (1994) J Catal 149:390–403

    Article  CAS  Google Scholar 

  3. Takahashi N, Shinjoh H, Lijima T, Suzuki T, Yamazaki K, Yokota K (1996) Catal Today 27:63–69

    Article  CAS  Google Scholar 

  4. Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE (2004) Catal Rev Sci Eng 46:163–245

    Article  Google Scholar 

  5. Hodjati S, Petit C, Pitchon V, Kiennemann A (2000) Appl Catal B 27:117–126

    Article  CAS  Google Scholar 

  6. Schmitz PJ, Baird RJ (2002) J Phys Chem B 106:4172–4180

    Article  CAS  Google Scholar 

  7. Cant NW, Patterson MJ (2002) Catal Today 73:271–278

    Article  CAS  Google Scholar 

  8. Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G (1999) J Catal 183:196–209

    Article  CAS  Google Scholar 

  9. Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P, Prinetto F (2004) J Catal 222:377–388

    Article  CAS  Google Scholar 

  10. Nova I, Lietti L, Castoldi L, Tronconi E, Forzatti P (2006) J Catal 239:244–254

    Article  CAS  Google Scholar 

  11. Lietti L, Nova I, Forzatti P (2008) J Catal 257:270–282

    Article  CAS  Google Scholar 

  12. Nova I, Lietti L, Forzatti P (2008) Catal Today 136:128–135

    Article  CAS  Google Scholar 

  13. Cumaranatunge L, Mulla SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2007) J Catal 246:29–34

    Article  CAS  Google Scholar 

  14. Harold MP (2012) Curr Opin Chem Eng 1:303–311

    Article  CAS  Google Scholar 

  15. Mulla SS, Chaugule SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2008) Catal Today 136:136–145

    Article  CAS  Google Scholar 

  16. Poulston S, Rajaram RR (2003) Catal Today 81:603–610

    Article  CAS  Google Scholar 

  17. Liu ZQ, Anderson JA (2004) J Catal 228:243–253

    Article  CAS  Google Scholar 

  18. Abdulhamid H, Fridell E, Skoglundh M (2004) Top Catal 30(1):161–168

    Article  Google Scholar 

  19. Dasari PR, Muncrief R, Harold MP (2012) Catal Today 184:43–53

    Article  CAS  Google Scholar 

  20. Unland ML (1973) J Phys Chem 77:1952–1956

    Article  CAS  Google Scholar 

  21. Rasko J, Solymosi F (1980) J Chem Soc Farad Trans I(76):2383–2395

    Article  Google Scholar 

  22. Rasko J, Solymosi F (1981) J Catal 71:219–222

    Article  CAS  Google Scholar 

  23. Solymosi F, Sarkany J, Schauer A (1977) J Catal 46:297–307

    Article  CAS  Google Scholar 

  24. Solymosi F, Volgyesi L, Sarkany J (1978) J Catal 54:336–344

    Article  CAS  Google Scholar 

  25. Solymosi F, Rasko J (1980) J Catal 63:217–225

    Article  CAS  Google Scholar 

  26. Hecker WC, Bell AT (1984) Appl Catal 85:389–397

    Article  CAS  Google Scholar 

  27. Kameoka S, Chafik T, Ukisu Y, Miyadera T (1998) Catal Lett 55:211–215

    Article  CAS  Google Scholar 

  28. Ukisu Y, Miyadera T, Abe A, Yoshida K (1996) Catal Lett 39:265–267

    Article  CAS  Google Scholar 

  29. Solymosi F, Rasko J (1980) J Catal 10:19–25

    Google Scholar 

  30. Miners JH, Bradshaw AM, Gardner P (1999) Phys Chem Chem Phys 1:4909–4912

    Article  CAS  Google Scholar 

  31. Forzatti P, Lietti L, Nova I, Morandi S, Prinetto F, Ghiotti G (2010) J Catal 274:163–175

    Article  CAS  Google Scholar 

  32. Nova I, Forzatti P, Prinetto F, Ghiotti G (2010) Catal Today 151:330–337

    Article  CAS  Google Scholar 

  33. Unland ML (1973) Science 179:567–569

    Article  CAS  Google Scholar 

  34. Szailer T, Kwak JH, Kim DH, Hanson JC, Peden CHF, Szanyi J (2006) J Catal 239:51–64

    Article  CAS  Google Scholar 

  35. Lesage T, Verrier C, Bazin P, Saussey J, Daturi M (2003) Phys Chem Chem Phy 5:4435–4440

    Article  CAS  Google Scholar 

  36. Bion N, Saussey J, Haneda M, Daturi M (2003) J Catal 217:47–58

    CAS  Google Scholar 

  37. Scholz CML, Maes BHW, De Croon M, Schouten JC (2007) Appl Catal A 332:1–7

    Article  CAS  Google Scholar 

  38. Chansai S, Burch R, Hardacre C, Breen J, Meunier F (2010) J Catal 276:49–55

    Article  CAS  Google Scholar 

  39. Chansai S, Burch R, Hardacre C, Breen J, Meunier F (2011) J Catal 281:98–105

    Article  CAS  Google Scholar 

  40. Nova I, Lietti L, Forzatti P, Frola F, Prinetto F, Ghiotti G (2009) Top Catal 52:1757–1761

    Article  CAS  Google Scholar 

  41. Castoldi L, Lietti L, Forzatti P, Morandi S, Ghiotti G, Vindigni F (2010) J Catal 276:335–350

    Article  CAS  Google Scholar 

  42. Castoldi L, Lietti L, Bonzi R, Artioli N, Forzatti P, Morandi S (2011) J Phys Chem C 115:1277–1286

    Article  CAS  Google Scholar 

  43. Morandi S, Ghiotti G, Castoldi L, Lietti L, Nova I, Forzatti P (2011) Catal Today 176:399–403

    Article  CAS  Google Scholar 

  44. Unland ML (1973) J Catal 31:459–465

    Article  CAS  Google Scholar 

  45. Kabin KS, Khanna P, Muncrief RL, Medhekar V, Harold MP (2006) Catal Today 114:72–85

    Article  CAS  Google Scholar 

  46. Muncrief RL, Khanna P, Kabin KS, Harold MP (2004) Catal Today 98:393–402

    Article  CAS  Google Scholar 

  47. Toops TJ, Smith DB, Epling WS, Parks JE, Partridge WP (2005) Appl Catal B 58:255–264

    Article  CAS  Google Scholar 

  48. Chen Y, Wang HF, Burch R, Hardacre C, Hu P (2011) Faraday Disc 152:121–133

    Article  CAS  Google Scholar 

  49. Clayton RD, Harold MP, Balakotaiah V (2009) AIChE J 55:687–700

    Article  CAS  Google Scholar 

  50. Yongjie R, Harold MP (2011) ACS Catal 1:969–988

    Article  Google Scholar 

  51. Theis J, Ura J, McCabe RW (2007) SAE Trans 2007-01-1055

  52. Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216:433–442

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Texas Commission on Environmental Quality (TCEQ) and the Department of Energy Office of Vehicle Technologies (DE-EE0000205). We also acknowledge the catalyst division of BASF (Iselin, NJ) for providing the catalysts used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Harold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasari, P., Muncrief, R. & Harold, M.P. Cyclic Lean Reduction of NO by CO in Excess H2O on Pt–Rh/Ba/Al2O3: Elucidating Mechanistic Features and Catalyst Performance. Top Catal 56, 1922–1936 (2013). https://doi.org/10.1007/s11244-013-0129-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0129-8

Keywords

Navigation