Skip to main content
Log in

Mechanism of the Reduction by Ammonia of Nitrates Stored onto a Pt–Ba/Al2O3 LNT Catalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The mechanism involved in the formation of N2 and of N2O during the reduction of nitrates stored onto a Pt–Ba/Al2O3 LNT catalyst is investigated using labeled NO and unlabeled ammonia, in the presence and in the absence of NO in the gas phase. The reduction of the stored NO x species (labeled nitrates) with NH3 leads to the selective formation of N2. Based on the isotopic distribution, it appears that N2 formation occurs primarily through the statistical coupling of N-atoms formed by dissociation of NO and NH3 at metal Pt sites. When the reduction of the stored nitrates is carried out in the presence of NO in the gas phase, NO is preferentially reduced. This implies that the rate determining step of the reduction of nitrates by ammonia is likely associated with the release of stored NO x . Negligible amounts of nitrous oxide have been observed during the NH3-TPSR with adsorbed nitrates, whereas relevant quantities of N2O have been detected at low temperatures (below 180 °C) in the runs performed in the presence of NO in the gas phase. The data converge to indicate that N2O formation involves the presence of gaseous NO and this suggests that the formation of nitrous oxide occurs either through the coupling of two adsorbed NO molecules or the recombination of an adsorbed NO molecule with an adsorbed NH x species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Worldwide Emissions Standards booklets by Delph (2012–13). URL http://delphi.com/manufacturers/auto/powertrain/emissions_standards. Accessed July 2013

  2. Heck RH, Farrauto RJ, Gulati ST (2002) Catalytic air pollution control, 2nd edn. Wiley, New York

    Google Scholar 

  3. Enderle C, Vent G, Paule M, Duvinage F (2008) SAE technical paper 2008-01-1182

  4. Miyoshi N, Tanizawa T, Kasahara K, Tateishi S (1995) European Patent Application 0 669 157 A1

  5. Epling W, Campbell L, Yezerets A, Currier N, Parks J (2004) Catal Rev Sci Eng 46:163–245

    Article  Google Scholar 

  6. Miyoshi N, Matsumoto S, Katoh K, Tanaka T, Harada J, Takahashi N, Yokota K, Sugiura M, Kasahara K (1995) SAE technical paper 1995-950809

  7. Castoldi L, Bonzi R, Lietti L, Forzatti P, Morandi S, Ghiotti G, Dzwigaj S (2011) J Catal 1:128–144

    Article  Google Scholar 

  8. Toops TJ, Smith DB, Partridge WP (2008) Catal Today 114:112–124

    Article  Google Scholar 

  9. Konsolakis M, Yentekakis IV (2001) Appl Catal B 29:103–113

    Article  CAS  Google Scholar 

  10. Lietti L, Daturi M, Blasin-Aubé V, Ghiotti G, Prinetto F, Forzatti P (2012) ChemCatChem 4:55–58

    Article  CAS  Google Scholar 

  11. Epling WS, Campbell LE, Yezerets A, Currier NW, Parks LE (2004) Catal Today 96:21–30

    Article  CAS  Google Scholar 

  12. Abdulhamid H, Fridell E, Skoglundh M (2004) Top Catal 30–31:161–168

    Article  Google Scholar 

  13. Nova I, Lietti L, Castoldi L, Tronconi E, Forzatti P (2006) J Catal 239:244–254

    Article  CAS  Google Scholar 

  14. Breen JP, Burch R, Fontaine-Gautrelet C, Hardacre C, Rioche C (2008) Appl Catal B 81:150–159

    Article  CAS  Google Scholar 

  15. Lietti L, Nova I, Forzatti P (2008) J Catal 257:270–282

    Article  CAS  Google Scholar 

  16. Cumaranatunge L, Mulla SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2007) J Catal 246:29–34

    Article  CAS  Google Scholar 

  17. Bhatia D, Harold MP, Balakotaiah V (2010) Catal Today 151:314–329

    Article  CAS  Google Scholar 

  18. Castoldi L, Nova I, Lietti L, Tronconi E, Forzatti P (2007) Top Catal 42–43:189–193

    Article  Google Scholar 

  19. Lindholm A, Currier NW, Fridell E, Yezerets A, Olsson L (2007) Appl Catal B 75:78–87

    Article  CAS  Google Scholar 

  20. Nova I, Lietti L, Forzatti P (2008) Catal Today 136:128–135

    Article  CAS  Google Scholar 

  21. Forzatti P, Lietti L, Nova I (2008) Energy Environ Sci 1:236–247

    Article  CAS  Google Scholar 

  22. Mulla SS, Chaugule SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2008) Catal Today 136:136–145

    Article  CAS  Google Scholar 

  23. Partridge WP, Choi JS (2009) Appl Catal B 91:144–151

    Article  CAS  Google Scholar 

  24. Masdrag L, Courtois X, Can F, Royer S, Rohart E, Blanchard G, Marecot P, Duprez D (2012) Catal Today 189:70–76

    Article  CAS  Google Scholar 

  25. Burch R, Daniells ST, Hu P (2002) J Chem Phys 117:2902–2909

    Article  CAS  Google Scholar 

  26. Cant NW, Chambers DC, Liu IOY (2011) J Catal 278:162–166

    Article  CAS  Google Scholar 

  27. Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P (2001) J Phys Chem B 105:12732–12745

    Article  CAS  Google Scholar 

  28. Lietti L, Artioli N, Righini L, Castoldi L, Forzatti P (2012) Ind Eng Chem Res 51:7597–7605

    Article  CAS  Google Scholar 

  29. Zheng X, Kumar A, Harold MP (2012) Catal Today 197:66–75

    Article  CAS  Google Scholar 

  30. Kumar A, Harold MP, Balakotaiah V (2010) J Catal 270:214–223

    Article  CAS  Google Scholar 

  31. Janssen FJJG, Van Den Kerkhof FMG, Bosh H, Ross JRH (1987) J Phys Chem 91:6633–6638

    Article  CAS  Google Scholar 

  32. Ozkan US, Cai YP, Kumthekar MW (1994) J Catal 149:390–403

    Article  CAS  Google Scholar 

  33. Chen H, Sun Q, Wen B, Yeom Y, Weiz E, Sachtler WM (2004) Catal Today 96:1–10

    Article  CAS  Google Scholar 

  34. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1–36

    Article  CAS  Google Scholar 

  35. Yeom Y, Li M, Savara A, Sachtler W, Weitz E (2008) Catal Today 136:55–63

    Article  CAS  Google Scholar 

  36. Lietti L, Righini L, Castoldi L, Artioli N, Forzatti P (2013) Top Catal 56:7–13

    Google Scholar 

  37. Burch R, Shestov AA, Sullivan JA (1999) J Catal 188:69–82

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Lietti or Pio Forzatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Righini, L., Castoldi, L., Lietti, L. et al. Mechanism of the Reduction by Ammonia of Nitrates Stored onto a Pt–Ba/Al2O3 LNT Catalyst. Top Catal 56, 1906–1915 (2013). https://doi.org/10.1007/s11244-013-0127-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0127-x

Keywords

Navigation