Skip to main content
Log in

Ethanol Steam Reforming on Co/CeO2: The Effect of ZnO Promoter

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of ZnO promoted Co/CeO2 catalysts were synthesized and characterized using XRD, TEM, H2-TPR, CO chemisorption, O2-TPO, IR-Py, and CO2-TPD. The effects of ZnO on the catalytic performances of Co/CeO2 were studied in ethanol steam reforming. It was found that the addition of ZnO facilitated the oxidation of Co0 via enhanced oxygen mobility of the CeO2 support which decreased the activity of Co/CeO2 in C–C bond cleavage of ethanol. 3 wt% ZnO promoted Co/CeO2 exhibited minimum CO and CH4 selectivity and maximum CO2 selectivity. This resulted from the combined effects of the following factors with increasing ZnO loading: (1) enhanced oxygen mobility of CeO2 facilitated the oxidation of CH x and CO to form CO2; (2) increased ZnO coverage on CeO2 surface reduced the interaction between CH x /CO and Co/CeO2; and (3) suppressed CO adsorption on Co0 reduced CO oxidation rate to form CO2. In addition, the addition of ZnO also modified the surface acidity and basicity of CeO2, which consequently affected the C2–C4 product distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Armor JN (1999) Appl Catal A 176:159–176

    Article  CAS  Google Scholar 

  2. Bshish A, Yakoob Z, Narayanan B, Ramakrishnan R, Ebshish A (2011) Chem Pap 65:251–266

    Article  CAS  Google Scholar 

  3. Hernández L, Kafarov V (2009) Int J Hydrogen Energy 34:7041–7050

    Article  Google Scholar 

  4. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094–4123

    Article  CAS  Google Scholar 

  5. Ni M, Leung DYC, Leung MKH (2007) Int J Hydrogen Energy 32:3238–3247

    Article  CAS  Google Scholar 

  6. Xuan J, Leung MKH, Leung DYC, Ni M (2009) Renew Sustain Energy Rev 13:1301–1313

    Article  CAS  Google Scholar 

  7. Wei ZH, Sun JM, Li Y, Datye AK, Wang Y (2012) Chem Soc Rev 41:7994–8008

    Article  CAS  Google Scholar 

  8. Duan S, Senkan S (2005) Ind Eng Chem Res 44:6381–6386

    Article  CAS  Google Scholar 

  9. Karim AM, Su Y, Sun JM, Yang C, Strohm JJ, King DL, Wang Y (2010) Appl Catal B-Environ 96:441–448

    Article  CAS  Google Scholar 

  10. Choong CKS, Zhong Z, Huang L, Wang Z, Ang TP, Borgna A, Lin J, Hong L, Chen L (2011) Appl Catal A 407:145–154

    Article  CAS  Google Scholar 

  11. Sun J, Qiu X-P, Wu F, Zhu W-T (2005) Int J Hydrogen Energy 30:437–445

    Article  CAS  Google Scholar 

  12. Zhang B, Tang X, Li Y, Xu Y, Shen W (2007) Int J Hydrogen Energy 32:2367–2373

    Article  CAS  Google Scholar 

  13. Padilla R, Benito M, Rodríguez L, Serrano A, Muñoz G, Daza L (2010) Int J Hydrogen Energy 35:8921–8928

    Article  CAS  Google Scholar 

  14. Zhang B, Tang X, Li Y, Cai W, Xu Y, Shen W (2006) Catal Commun 7:367–372

    Article  CAS  Google Scholar 

  15. Banach B, Machocki A, Rybak P, Denis A, Grzegorczyk W, Gac W (2011) Catal Today 176:28–35

    Article  CAS  Google Scholar 

  16. Barton DG, Soled SL, Iglesia E (1998) Top Catal 6:87–99

    Article  CAS  Google Scholar 

  17. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2003) J Power Sources 124:99–103

    Article  CAS  Google Scholar 

  18. Llorca J, Homs Ns, Sales J, de la Piscina PRr (2002) J Catal 209:306–317

  19. Haga F, Nakajima T, Miya H, Mishima S (1997) Catal Lett 48:223–227

    Article  CAS  Google Scholar 

  20. Song H, Zhang LZ, Watson RB, Braden D, Ozkan US (2007) Catal Today 129:346–354

    Article  CAS  Google Scholar 

  21. Song H, Zhang LZ, Ozkan US (2010) Ind Eng Chem Res 49:8984–8989

    Article  CAS  Google Scholar 

  22. Song H, Ozkan US (2009) J Catal 261:66–74

    Article  CAS  Google Scholar 

  23. Song H, Ozkan US (2009) J Phys Chem A 114:3796–3801

    Article  Google Scholar 

  24. Lin SSY, Kim DH, Ha SY (2009) Appl Catal a-Gen 355:69–77

    Article  CAS  Google Scholar 

  25. Martono E, Hyman MP, Vohs JM (2011) Phys Chem Chem Phys 13:9880–9886

    Article  CAS  Google Scholar 

  26. Martono E, Vohs JM (2011) ACS Catal 1:1414–1420

    Article  CAS  Google Scholar 

  27. Martono E, Vohs JM (2012) J Catal 291:79–86

    Article  CAS  Google Scholar 

  28. Hyman MP, Vohs JM (2011) Surf Sci 605:383–389

    Article  CAS  Google Scholar 

  29. Karim AM, Su Y, Engelhard MH, King DL, Wang Y (2011) ACS Catal 1:279–286

    Article  CAS  Google Scholar 

  30. Lebarbier VM, Karim AM, Engelhard MH, Wu Y, Xu B-Q, Petersen EJ, Datye AK, Wang Y (2011) ChemSusChem 4:1679–1684

    Article  CAS  Google Scholar 

  31. Yue WB, Zhou WZ (2007) J Mater Chem 17:4947–4952

    Article  CAS  Google Scholar 

  32. Mishra BG, Rao GR (2006) J Mol Catal a-Chem 243:204–213

    Article  CAS  Google Scholar 

  33. Duclere JR, Doggett B, Henry MO, McGlynn E, Kumar RTR, Mosnier JP, Perrin A, Guilloux-Viry M (2007) J Appl Phys 101

  34. O’Shea VAD, Homs N, Pereira EB, Nafria R, de la Piscina PR (2007) Catal Today 126:148–152

    Article  Google Scholar 

  35. Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) J Catal 206:230–241

    Article  CAS  Google Scholar 

  36. Laguna OH, Centeno MA, Romero-Sarria F, Odriozola JA (2011) Catal Today 172:118–123

    Article  CAS  Google Scholar 

  37. He Z, Yang M, Wang X, Zhao Z, Duan A (2012) Catal Today 194:2–8

    Article  CAS  Google Scholar 

  38. Moura JS, Souza MOG, Bellido JDA, Assaf EM, Opportus M, Reyes P, Rangel MdC (2012) Int J Hydrogen Energy 37:3213–3224

    Article  CAS  Google Scholar 

  39. Zhong Z, Ang H, Choong C, Chen L, Huang L, Lin J (2009) Phys Chem Chem Phys 11:872–880

    Article  CAS  Google Scholar 

  40. Song H, Bao X, Hadad CM, Ozkan US (2011) Catal Lett 141:43–54

    Article  CAS  Google Scholar 

  41. Hayashi F, Iwamoto M (2013) ACS Catal: 14–17

  42. Sun J, Zhu K, Gao F, Wang C, Liu J, Peden CHF, Wang Y (2011) J Am Chem Soc 133:11096–11099

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, the WSU Franceschi Microscopy Center and Dr. Knoblauch for use of the TEM, and the WSU GeoAnalytical Lab and Dr. Rowe for use of the XRD. S.D. thanks Feng Gao and Yilin Wang for many helpful discussions in the early stage of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junming Sun or Yong Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 346 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, S., Sun, J. & Wang, Y. Ethanol Steam Reforming on Co/CeO2: The Effect of ZnO Promoter. Top Catal 56, 1651–1659 (2013). https://doi.org/10.1007/s11244-013-0103-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0103-5

Keywords

Navigation