Hydrogenation Processes at the Surface of Ruthenium Nanoparticles: A NMR Study

Abstract

The reactivity of ruthenium nanoparticles stabilized by 4-(3-phenylpropyl)pyridine in hydrogen transfer and hydrogenation processes was monitored by NMR spectroscopy. Unsaturated substrates such as styrene, 4-vinylpyridine and 4-phenyl-but-3-en-2-one were used as model molecules to investigate the surface properties of nanoparticles by a combination of NMR studies. Interestingly, the hydrides present at the metallic surface after nanoparticles synthesis are selectively transferred to vinylic groups without reducing the aromatic rings, under dihydrogen-free atmosphere. DOSY and NOE NMR experiments permitted to propose a way of interaction of the organic compounds at the metallic surface. In particular, the coordination of the substrate could be evidenced for 4-vinylpyridine and 4-ethylpyridine but not for styrene derivatives.

Graphical Abstract

Curved double arrows represent magnetization exchanges. Straight arrows represent adsorption/desorption phenomena.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3

Notes

  1. 1.

    The regime change from a small to a big molecule is related to the frequency of the spectrometer (ω) and the mobility of the molecules (Tc, the rotation time of the molecule). For ωTc = 1.1, zero intensity for NOE effects; for ωTc < 1.1, positive NOE signals; for ωTc > 1.1, negative NOE signals. Using a 500 MHz spectrometer, molecules with mass lower than 600 g/mol give positive NOE signals.

References

  1. 1.

    Bell AT (2003) Science 299:1688

    Article  CAS  Google Scholar 

  2. 2.

    Scott SL, Crudden CM, Jones CW (eds) (2003) Nanostructured catalysts. Kluwer/Plenum, New York

    Google Scholar 

  3. 3.

    Zhou B, Hermans S, Somorjai G (eds) (2004) Nanotechnology in catalysis. Kluwer/Plenum, New York

    Google Scholar 

  4. 4.

    Heiz U, Landman U (eds) (2007) Nanocatalysis. Springer, Berlin

    Google Scholar 

  5. 5.

    Astruc D (ed) (2008) Nanoparticles and catalysis. Wiley–VCH, Weinheim

    Google Scholar 

  6. 6.

    Philippot K, Serp P (eds) (2013) Nanomaterials in catalysis. Wiley–VCH, Weinheim

    Google Scholar 

  7. 7.

    Semagina N, Kiwi-Minsker L (2009) Catal Rev 51:47

    Article  Google Scholar 

  8. 8.

    Favier I, Madec D, Teuma E, Gómez M (2011) Curr Org Chem 15:3127

    Article  CAS  Google Scholar 

  9. 9.

    An K, Alayoglu S, Ewers T, Somorjai GA (2012) J Colloid Interf Sci 373:1

    Article  CAS  Google Scholar 

  10. 10.

    Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B (2004) J Am Chem Soc 126:1592

    Article  CAS  Google Scholar 

  11. 11.

    Favier I, Gómez M, Muller G, Axet R, Castillón S, Claver C, Jansat S, Chaudret B, Philippot K (2007) Adv Synth Catal 349:2459

    Article  CAS  Google Scholar 

  12. 12.

    Durand J, Teuma, E, Gómez, M (2008) Eur J Inorg Chem 3577

  13. 13.

    Favier I, Teuma E, Gómez M (2009) CR Chim 12:533

    Article  CAS  Google Scholar 

  14. 14.

    Lara P, Philippot K, Chaudret B (2013) Chem Cat Chem 5:28

    CAS  Google Scholar 

  15. 15.

    Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M (2008) Chem Commun 28:3296

    Article  Google Scholar 

  16. 16.

    Castillejos E, Debouttière P-J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P (2009) Angew Chem Int Ed 48:2529

    Article  CAS  Google Scholar 

  17. 17.

    Jahjah M, Kihn Y, Teuma E, Gómez M (2010) J Mol Catal A 332:106

    Article  CAS  Google Scholar 

  18. 18.

    Rodríguez-Pérez L, Pradel C, Serp P, Gómez M, Teuma E (2011) Chem Cat Chem 3:749

    Google Scholar 

  19. 19.

    García-Suárez EJ, Tristany M, García AB, Collière V, Philippot K (2012) Micropor Mesopor Mat 153:155

    Article  Google Scholar 

  20. 20.

    Weitz DA, Huang JS, Lin MY, Sung J (1985) Phys Rev Lett 54:1416

    Article  CAS  Google Scholar 

  21. 21.

    Widegren JA, Finke RG (2003) J Mol Catal A 191(2):187

    Article  CAS  Google Scholar 

  22. 22.

    Roucoux A, Schulz J (2002) Patin H Chem Rev 102:3757

    Article  CAS  Google Scholar 

  23. 23.

    Delbecq F, Loffreda D, Sautet P (2010) J Phys Chem Lett 1:323

    Article  CAS  Google Scholar 

  24. 24.

    Johnson CS (1999) Progr Nucl Magn Reson Spectrosc 34:203

    Article  CAS  Google Scholar 

  25. 25.

    Price WS (1997) Concepts Magn Reson 9:299

    Article  CAS  Google Scholar 

  26. 26.

    Price WS (1998) Concepts Magn Reson 10:197

    Article  CAS  Google Scholar 

  27. 27.

    Stejskal EO, Tanner JT (1965) J Chem Phys 42:288

    Article  CAS  Google Scholar 

  28. 28.

    Wilder G, Dotch V, Wuthrich K (1994) J Magn Reson (A) 108:255

    Article  Google Scholar 

  29. 29.

    Delsuc MA, Malliavin TE (1998) Anal Chem 70:2146

    Article  CAS  Google Scholar 

  30. 30.

    Neuhaus D, Williamson MP (2000) The nuclear overhauser effect in structural and conformational analysis, 2nd edn. Wiley–VCH, New York

    Google Scholar 

  31. 31.

    Fritzinger B (2009) J Am Chem Soc 131:3024

    Article  CAS  Google Scholar 

  32. 32.

    Stott K, Keeler J, Van QN, Shaka AJ (1997) J Magn Reson 125:302

    Article  CAS  Google Scholar 

  33. 33.

    Garcia-Anton J, Axet MR, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Angew Chem Int Ed 47:2074

    Article  CAS  Google Scholar 

  34. 34.

    Bera T, Thybaut JW, Marin GB (2012) ACS Catal 2:1305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Centre National de la Recherche Scientifique (CNRS), the Université Paul Sabatier and the Institut de Chimie de Toulouse. I.F. and P.L. are grateful to the Université Paul Sabatier for a funded project (AO1 2012).

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Gómez.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 968 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Favier, I., Lavedan, P., Massou, S. et al. Hydrogenation Processes at the Surface of Ruthenium Nanoparticles: A NMR Study. Top Catal 56, 1253–1261 (2013). https://doi.org/10.1007/s11244-013-0092-4

Download citation

Keywords

  • Ruthenium
  • Nanoparticles
  • Surface reactivity
  • DOSY NMR
  • NOE effects
  • Hydrogen transfer
  • Hydrogenation
  • Arenes