Abstract
The reactivity of ruthenium nanoparticles stabilized by 4-(3-phenylpropyl)pyridine in hydrogen transfer and hydrogenation processes was monitored by NMR spectroscopy. Unsaturated substrates such as styrene, 4-vinylpyridine and 4-phenyl-but-3-en-2-one were used as model molecules to investigate the surface properties of nanoparticles by a combination of NMR studies. Interestingly, the hydrides present at the metallic surface after nanoparticles synthesis are selectively transferred to vinylic groups without reducing the aromatic rings, under dihydrogen-free atmosphere. DOSY and NOE NMR experiments permitted to propose a way of interaction of the organic compounds at the metallic surface. In particular, the coordination of the substrate could be evidenced for 4-vinylpyridine and 4-ethylpyridine but not for styrene derivatives.
Graphical Abstract
Curved double arrows represent magnetization exchanges. Straight arrows represent adsorption/desorption phenomena.

This is a preview of subscription content, access via your institution.







Notes
- 1.
The regime change from a small to a big molecule is related to the frequency of the spectrometer (ω) and the mobility of the molecules (Tc, the rotation time of the molecule). For ωTc = 1.1, zero intensity for NOE effects; for ωTc < 1.1, positive NOE signals; for ωTc > 1.1, negative NOE signals. Using a 500 MHz spectrometer, molecules with mass lower than 600 g/mol give positive NOE signals.
References
- 1.
Bell AT (2003) Science 299:1688
- 2.
Scott SL, Crudden CM, Jones CW (eds) (2003) Nanostructured catalysts. Kluwer/Plenum, New York
- 3.
Zhou B, Hermans S, Somorjai G (eds) (2004) Nanotechnology in catalysis. Kluwer/Plenum, New York
- 4.
Heiz U, Landman U (eds) (2007) Nanocatalysis. Springer, Berlin
- 5.
Astruc D (ed) (2008) Nanoparticles and catalysis. Wiley–VCH, Weinheim
- 6.
Philippot K, Serp P (eds) (2013) Nanomaterials in catalysis. Wiley–VCH, Weinheim
- 7.
Semagina N, Kiwi-Minsker L (2009) Catal Rev 51:47
- 8.
Favier I, Madec D, Teuma E, Gómez M (2011) Curr Org Chem 15:3127
- 9.
An K, Alayoglu S, Ewers T, Somorjai GA (2012) J Colloid Interf Sci 373:1
- 10.
Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B (2004) J Am Chem Soc 126:1592
- 11.
Favier I, Gómez M, Muller G, Axet R, Castillón S, Claver C, Jansat S, Chaudret B, Philippot K (2007) Adv Synth Catal 349:2459
- 12.
Durand J, Teuma, E, Gómez, M (2008) Eur J Inorg Chem 3577
- 13.
Favier I, Teuma E, Gómez M (2009) CR Chim 12:533
- 14.
Lara P, Philippot K, Chaudret B (2013) Chem Cat Chem 5:28
- 15.
Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M (2008) Chem Commun 28:3296
- 16.
Castillejos E, Debouttière P-J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P (2009) Angew Chem Int Ed 48:2529
- 17.
Jahjah M, Kihn Y, Teuma E, Gómez M (2010) J Mol Catal A 332:106
- 18.
Rodríguez-Pérez L, Pradel C, Serp P, Gómez M, Teuma E (2011) Chem Cat Chem 3:749
- 19.
García-Suárez EJ, Tristany M, García AB, Collière V, Philippot K (2012) Micropor Mesopor Mat 153:155
- 20.
Weitz DA, Huang JS, Lin MY, Sung J (1985) Phys Rev Lett 54:1416
- 21.
Widegren JA, Finke RG (2003) J Mol Catal A 191(2):187
- 22.
Roucoux A, Schulz J (2002) Patin H Chem Rev 102:3757
- 23.
Delbecq F, Loffreda D, Sautet P (2010) J Phys Chem Lett 1:323
- 24.
Johnson CS (1999) Progr Nucl Magn Reson Spectrosc 34:203
- 25.
Price WS (1997) Concepts Magn Reson 9:299
- 26.
Price WS (1998) Concepts Magn Reson 10:197
- 27.
Stejskal EO, Tanner JT (1965) J Chem Phys 42:288
- 28.
Wilder G, Dotch V, Wuthrich K (1994) J Magn Reson (A) 108:255
- 29.
Delsuc MA, Malliavin TE (1998) Anal Chem 70:2146
- 30.
Neuhaus D, Williamson MP (2000) The nuclear overhauser effect in structural and conformational analysis, 2nd edn. Wiley–VCH, New York
- 31.
Fritzinger B (2009) J Am Chem Soc 131:3024
- 32.
Stott K, Keeler J, Van QN, Shaka AJ (1997) J Magn Reson 125:302
- 33.
Garcia-Anton J, Axet MR, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Angew Chem Int Ed 47:2074
- 34.
Bera T, Thybaut JW, Marin GB (2012) ACS Catal 2:1305
Acknowledgments
This work was financially supported by the Centre National de la Recherche Scientifique (CNRS), the Université Paul Sabatier and the Institut de Chimie de Toulouse. I.F. and P.L. are grateful to the Université Paul Sabatier for a funded project (AO1 2012).
Author information
Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Favier, I., Lavedan, P., Massou, S. et al. Hydrogenation Processes at the Surface of Ruthenium Nanoparticles: A NMR Study. Top Catal 56, 1253–1261 (2013). https://doi.org/10.1007/s11244-013-0092-4
Published:
Issue Date:
Keywords
- Ruthenium
- Nanoparticles
- Surface reactivity
- DOSY NMR
- NOE effects
- Hydrogen transfer
- Hydrogenation
- Arenes