Topics in Catalysis

, Volume 56, Issue 13–14, pp 1208–1219 | Cite as

Novel Polymer Stabilized Water Soluble Ru-Nanoparticles as Aqueous Colloidal Fischer–Tropsch Catalysts

  • Aitor Gual
  • Jorge A. Delgado
  • Cyril Godard
  • Sergio Castillón
  • Daniel Curulla-Ferré
  • Carmen Claver
Original Paper


Small water soluble Ru-nanoparticles (ca. 2–5 nm) stabilized by lignins were synthesized by reduction of RuCl3 using H2. For comparison purposes, small Ru-NPs (ca. 2.0 nm) with narrow size distribution were also synthesized using polyvinylpyrrolidone (PVP) as stabilizer and H2 and NaBH4 as reducing agents. All these Ru-NPs were active catalysts in Fischer–Tropsch reaction. Interestingly, CO2 was detected as by-product demonstrating that the water gas shift reaction is taking place under these conditions. The Ru-NPs stabilized by lignins were less active (up to 0.49 molCO mol Ru −1  h−1) that those stabilized by PVP (up to 3.35 molCO mol Ru −1  h−1), exhibiting also higher CO2 production. Several reaction parameters were optimized such as the stirring rate, reducing method, polymer/Ru ratio and size of the Ru-NPs.


Ruthenium nanoparticles Soluble nanoparticles Stabilizing agents Lignins Aqueous catalysis Fischer–Tropsch reaction 



The authors are grateful to Total S.A., the Spanish Ministerio de Economía y Competitividad (CTQ2010-14938/BQU, CTQ2011-22872, and Ramon y Cajal fellowship to C. Godard) and the Generalitat de Catalunya (2009SGR116) for financial support.

Supplementary material

11244_2013_87_MOESM1_ESM.docx (169 kb)
Supplementary material 1 (DOCX 169 kb)


  1. 1.
    Casci JL, Lok CM, Shannon MD (2009) Catal Today 145:38CrossRefGoogle Scholar
  2. 2.
    Fischer F, Tropsch H (1923) Brennst Chem 4:276Google Scholar
  3. 3.
    Storch H, Golumbic N, Anderson RB (1951) The Fischer–Tropsch and related syntheses. Wiley, New YorkGoogle Scholar
  4. 4.
    Anderson RB (1984) The Fischer–Tropsch synthesis. Academic Press, New YorkGoogle Scholar
  5. 5.
    Iglesia E (1997) Appl Catal A 161:59CrossRefGoogle Scholar
  6. 6.
    Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692CrossRefGoogle Scholar
  7. 7.
    Steynberg AP, Dry ME (2004) Fischer–Tropsch technology. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Davis BH, Occelli ML (2007) Fischer–Tropsch synthesis. Catalysts and Catalysis, AmsterdamGoogle Scholar
  9. 9.
    Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212CrossRefGoogle Scholar
  10. 10.
    Chaudret B, Philippot K (2007) Oil Gas Sci Tech 62:799CrossRefGoogle Scholar
  11. 11.
    Philippot. K, Chaudret. B (2007) Comprehensive organometallic chemistry III. In: Crabtree R. H, Mingos M. P, O′Hare D (eds), vol. 12, Elsevier, Amsterdam, chap. p. 12–0371Google Scholar
  12. 12.
    Chaudret B (2005) Top Organomet Chem 15:233CrossRefGoogle Scholar
  13. 13.
    Chaudret B, Philippot K (2003) C R Chimie 6:1019CrossRefGoogle Scholar
  14. 14.
    Astruc D (2007) Nanoparticles and catalysis. Wiley–VCH, WeinheimCrossRefGoogle Scholar
  15. 15.
    Gual A, Godard C, Castillón S, Curulla-Ferré D, Claver C (2012) Catal Tod 183:154CrossRefGoogle Scholar
  16. 16.
    Somorjai GA, Kwangjin A (2012) ChemCatChem 4:1512CrossRefGoogle Scholar
  17. 17.
    Wasserscheid P, Keim W (2000) Angew Chem Int Ed 39:3772CrossRefGoogle Scholar
  18. 18.
    Migowski P, Dupont J (2007) Chem Eur J 13:32CrossRefGoogle Scholar
  19. 19.
    Roucoux A, Schultz J, Patin H (2002) Chem Rev 102:3757CrossRefGoogle Scholar
  20. 20.
    Gual A, Godard C, Castillón S, Claver C (2010) Dalton Trans 39:11499CrossRefGoogle Scholar
  21. 21.
    Roucoux A (2005) Top Organomet Chem 16:261CrossRefGoogle Scholar
  22. 22.
    Widegren A, Finke RG (2003) J Mol Catal A 191:187CrossRefGoogle Scholar
  23. 23.
    Yan N, Xiao C, Kou Y (2010) Coord Chem Rev 254:1179CrossRefGoogle Scholar
  24. 24.
    Xiao CX, Cai ZP, Wang T, Kou Y, Yan N (2008) Angew Chem Int Ed 47:746CrossRefGoogle Scholar
  25. 25.
    Kou Y, Yang N, Xiao C, Cai Z, Li Y (2008) CA2681319Google Scholar
  26. 26.
    Fan X-B, Tao Z-Y, Xiao C-X, Liu F, Kou Y (2010) Green Chem 12:795CrossRefGoogle Scholar
  27. 27.
    Cheng X, Wu B, Yang Y, Xiang H, Li Y (2010) J Mol Catal A 329:103CrossRefGoogle Scholar
  28. 28.
    Yan N, Zhang J-g, Tong Y, Yao S, Xiao C, Li Z, Kou Y (2009) Chem Commun 4423Google Scholar
  29. 29.
    Kim C.J (1993) US5227407 (A), to Exxon research and engineering companyGoogle Scholar
  30. 30.
    Claeys M, van Steen E (2002) Catal Today 71:419CrossRefGoogle Scholar
  31. 31.
    Klein HF (2008) Appl Catal A 350:126CrossRefGoogle Scholar
  32. 32.
    Liu L, Sun G, Wang C, Yang J, Xiao C, Wang H, Ma D, Kou Y (2012) Catal Today 183:136–142CrossRefGoogle Scholar
  33. 33.
    Wang C, Zhao H, Wang H, Liu L, Xiao C, Ma D (2012) Catal Today 183:143–153CrossRefGoogle Scholar
  34. 34.
    Fan X-B, Yan N, Tao Z-Y, Evans D, Xiao C-X, Kou Y (2009) ChemSusChem 2:941CrossRefGoogle Scholar
  35. 35.
    Quek X-Y, Guan Y, van Santen RA, Hensen EJM (2011) ChemCatChem 3:1735CrossRefGoogle Scholar
  36. 36.
    Coccia F, Tonucci L, Bosco D, Bressan M, d’Alessandro N (2012) Green Chem 14:1073CrossRefGoogle Scholar
  37. 37.
    Milczarek G, Ciszewski A (2012) Colloids Surf, B 90:53–57CrossRefGoogle Scholar
  38. 38.
    Xiang Y, Chen L CN 102489716Google Scholar
  39. 39.
    Han J U, Lee D H, Lee G H, Lee J D, Lee O S, Ryu B H KR 2004081215Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Aitor Gual
    • 1
  • Jorge A. Delgado
    • 1
  • Cyril Godard
    • 2
  • Sergio Castillón
    • 3
  • Daniel Curulla-Ferré
    • 4
  • Carmen Claver
    • 2
  1. 1.Centre Tecnòlogic de la Química de CatalunyaTarragonaSpain
  2. 2.Departament de Química Física I InorgànicaUniversitat Rovira I VirgiliTarragonaSpain
  3. 3.Departament de Química Analítica I OrgànicaUniversitat Rovira I VirgiliTarragonaSpain
  4. 4.Gaz & Energies NouvellesTotal S.AParis La Defense 6France

Personalised recommendations