Kinetics of Palladium Oxidation in the mbar Pressure Range: Ambient Pressure XPS Study

Abstract

Palladium oxidation was studied by ambient-pressure X-ray photoelectron spectroscopy in the mbar pressure range on the Pd(111) and Pd(110) surfaces. The oxidation kinetics on both surfaces show an induction period when the oxidation rate was low at the beginning and then accelerated. The slow initial oxidation is governed by (a) the rate of nucleus formation, and (b) the rate of oxide nucleus growth. Depth profiling varying photon energy/kinetic photoelectron energy pointed to a 3D oxidation. It is remarkable that the oxidation of Pd(110) proceeds at ~100 K lower temperatures than on Pd(111). We suggest that at the high temperature required on Pd(111) nucleation is thermodynamically controlled, and therefore, the nucleation rate decreases with temperature. On Pd(110), nucleation is predominantly kinetically controlled and thus the oxidation rate increases with temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Bondzie VA, Kleban PH, Dwyer DJ (2000) Kinetics of PdO formation and CO reduction on Pd(110). Surf Sci 465:266–276

    Article  CAS  Google Scholar 

  2. 2.

    Monteiro RS, Zemlyanov D, Storey JM, Ribeiro FH (2001) Surface area increase on Pd foils after oxidation in excess methane. J Catal 201:37–45

    Article  CAS  Google Scholar 

  3. 3.

    Monteiro RS, Zemlyanov D, Storey JM, Ribeiro FH (2001) Turnover rate and reaction orders for the complete oxidation of methane on a palladium foil in excess dioxygen. J Catal 199:291–301

    Article  CAS  Google Scholar 

  4. 4.

    Zheng G, Altman EI (2002) The reactivity of surface oxygen phases on Pd(100) toward reduction by CO. J Phys Chem B 106:1048–1057

    Article  CAS  Google Scholar 

  5. 5.

    Altman EI (2003) The reaction of propene with oxygen-covered Pd(100). Surf Sci 547:108–126

    Article  CAS  Google Scholar 

  6. 6.

    Zhu G, Han J, Zemlyanov DY, Ribeiro FH (2005) Temperature dependence of the kinetics for the complete oxidation of methane on palladium and palladium oxide. J Phys Chem B 109:2331–2337

    Article  CAS  Google Scholar 

  7. 7.

    Gabasch H, Kleimenov E, Teschner D, Zafeiratos S, Havecker M, Knop-Gericke A, Schlogl R, Zemlyanov D, Aszalos-Kiss B, Hayek K, Klotzer B (2006) Carbon incorporation during ethene oxidation on Pd(111) studied by in situ X-ray photoelectron spectroscopy at 2 × 10–3 mbar. J Catal 242:340–348

    Article  CAS  Google Scholar 

  8. 8.

    Warner JS (1967) The free energy of formation of palladium oxide. J Electrochem Soc 114:68–71

    Article  CAS  Google Scholar 

  9. 9.

    Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, Gauthier Y, Konvicka C, Schmid M, Varga P (2002) Two-dimensional oxide on Pd(111). Phys Rev Lett 88:246103/246101–246103/246104

    Google Scholar 

  10. 10.

    Zheng G, Altman EI (2000) The oxidation of Pd(111). Surf Sci 462:151–168

    Article  CAS  Google Scholar 

  11. 11.

    Conrad H, Ertl G, Kueppers J, Latta EE (1977) Interaction of nitric oxide and oxygen with palladium(111) surfaces I. Surf Sci 65:235–244

    Article  CAS  Google Scholar 

  12. 12.

    Campbell CT, Foyt DC, White JM (1977) Oxygen penetration into the bulk of palladium. J Phys Chem 81:491–494

    Article  CAS  Google Scholar 

  13. 13.

    Weissman DL, Shek ML, Spicer WE (1980) Photoemission spectra and thermal desorption characteristics of two states of oxygen on palladium. Surf Sci 92:L59–L66

    Article  CAS  Google Scholar 

  14. 14.

    Leisenberger FP, Koller G, Sock M, Surnev S, Ramsey MG, Netzer FP, Klotzer B, Hayek K (2000) Surface and subsurface oxygen on Pd(111). Surf Sci 445:380–393

    Article  CAS  Google Scholar 

  15. 15.

    Westerstrom R, Weststrate CJ, Gustafson J, Mikkelsen A, Schnadt J, Andersen JN, Lundgren E, Seriani N, Mittendorfer F, Kresse G, Stierle A (2009) Lack of surface oxide layers and facile bulk oxide formation on Pd(110). Phys Rev B 80:125431/125431–125431/125411

    Google Scholar 

  16. 16.

    Westerstroem R, Weststrate CJ, Resta A, Mikkelsen A, Schnadt J, Andersen JN, Lundgren E, Schmid M, Seriani N, Harl J, Mittendorfer F, Kresse G (2008) Stressing Pd atoms. Initial oxidation of the Pd(110) surface. Surf Sci 602:2440–2447

    Article  CAS  Google Scholar 

  17. 17.

    Kostelnik P, Seriani N, Kresse G, Mikkelsen A, Lundgren E, Blum V, Sikola T, Varga P, Schmid M (2007) The Pd(100)-(.sqroot.hivin.5 ×.sqroot.hivin.5) R27°-O surface oxide: a LEED DFT and STM study. Surf Sci 601:1574–1581

    Article  CAS  Google Scholar 

  18. 18.

    Zheng G, Altman EI (2002) The oxidation mechanism of Pd(100). Surf Sci 504:253–270

    Article  CAS  Google Scholar 

  19. 19.

    Westerstrom R, Gustafson J, Resta A, Mikkelsen A, Andersen JN, Lundgren E, Seriani N, Mittendorfer F, Schmid M, Klikovits J, Varga P, Ackermann MD, Frenken JWM, Kasper N, Stierle A (2007) Oxidation of Pd(553): From ultrahigh vacuum to atmospheric pressure. Phys Rev B 76:155410/155411–155410/155419

    Google Scholar 

  20. 20.

    Klikovits J, Napetschnig E, Schmid M, Seriani N, Dubay O, Kresse G, Varga P (2007) Surface oxides on Pd(111): STM and density functional calculations. Phys Rev B 76:045405/045401–045405/045409

    Google Scholar 

  21. 21.

    Kan HH, Weaver JF (2009) Mechanism of PdO thin film formation during the oxidation of Pd(111). Surf Sci 603:2671–2682

    Article  CAS  Google Scholar 

  22. 22.

    Kan HH, Weaver JF (2008) A PdO(101) thin film grown on Pd(111) in ultrahigh vacuum. Surf Sci 602:L53–L57

    Article  CAS  Google Scholar 

  23. 23.

    Kan HH, Shumbera RB, Weaver JF (2008) Adsorption and abstraction of oxygen atoms on Pd(111): characterization of the precursor to PdO formation. Surf Sci 602:1337–1346

    Article  CAS  Google Scholar 

  24. 24.

    Altman EI (2009) On the mechanism of the transition from surface to bulk metal oxides (A perspective on the article “mechanism of PdO thin film formation during the oxidation of Pd(111)”). Surf Sci 603:2669–2670

    Article  CAS  Google Scholar 

  25. 25.

    Wang J, Yun Y, Altman EI (2007) The plasma oxidation of Pd(100). Surf Sci 601:3497–3505

    Article  CAS  Google Scholar 

  26. 26.

    Yudanov IV, Neyman KM, Rosch N (2004) Physi Chem Chem Phys 6:116–123

    Article  CAS  Google Scholar 

  27. 27.

    Han J, Zemlyanov DY, Ribeiro FH (2006) Interaction of O2 with Pd single crystals in the range 1–150 Torr oxygen dissolution and reaction. Surf Sci 600:2752–2761

    Article  CAS  Google Scholar 

  28. 28.

    Han J, Zemlyanov DY, Ribeiro FH (2006) Interaction of O2 with Pd single crystals in the range 1–150 Torr surface morphology transformations. Surf Sci 600:2730–2744

    Article  CAS  Google Scholar 

  29. 29.

    Pantfoeder J, Poelmann S, Zhu JF, Borgmann D, Denecke R, Steinruek HP (2005) New setup for in situ x-ray photoelectron spectroscopy from ultrahigh vacuum to 1 mbar. Rev Sci Instrum 76:014102/014101–014102/014109

    Google Scholar 

  30. 30.

    Salmeron M, Schlogl R (2008) Ambient pressure photoelectron spectroscopy. A new tool for surface science and nanotechnology. Surf Sci Rep 63:169–199

    Article  CAS  Google Scholar 

  31. 31.

    Ketteler G, Ogletree DF, Bluhm H, Liu H, Hebenstreit ELD, Salmeron M (2005) In situ spectroscopic study of the oxidation and reduction of Pd(111). J Am Chem Soc 127:18269–18273

    Article  CAS  Google Scholar 

  32. 32.

    Gabasch H, Unterberger W, Hayek K, Kloetzer B, Kleimenov E, Teschner D, Zafeiratos S, Haevecker M, Knop-Gericke A, Schloegl R, Han J, Ribeiro FH, Aszalos-Kiss B, Curtin T, Zemlyanov D (2006) In situ XPS study of Pd(111) oxidation at elevated pressure, Part 2: palladium oxidation in the 10–1 mbar range. Surf Sci 600:2980–2989

    Article  CAS  Google Scholar 

  33. 33.

    Zemlyanov D, Aszalos-Kiss B, Kleimenov E, Teschner D, Zafeiratos S, Haevecker M, Knop-Gericke A, Schloegl R, Gabasch H, Unterberger W, Hayek K, Kloetzer B (2006) In situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10–3 mbar O2. Surf Sci 600:983–994

    Article  CAS  Google Scholar 

  34. 34.

    Gabasch H, Hayek K, Kloetzer B, Unterberger W, Kleimenov E, Teschner D, Zafeiratos S, Haevecker M, Knop-Gericke A, Schloegl R, Aszalos-Kiss B, Zemlyanov D (2007) Methane oxidation on Pd(111): in situ XPS identification of active phase. J Phys Chem C 111:7957–7962

    Article  CAS  Google Scholar 

  35. 35.

    Doniach S, Sunjic M (1970) J Phys Chem C 31:285

    Google Scholar 

  36. 36.

    Fadley CS (1978) Basic concepts of x-ray photoelectron spectroscopy. Electron Spectrosc Theory Tech Appl 2:1–156

    CAS  Google Scholar 

  37. 37.

    Yeh JJ, Lindau I (1985) Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At Data Nucl Data Tables 32:1–155. doi:10.1016/0092-640x(85)90016-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported through EU program RII3-CT-2004-506008 (proposal No. 2007_1_60973; User Project Acronym: BESSY-ID.07.1.973). The authors thank the BESSY staff for their support of the in situ XPS measurements. Support from the Department of Energy, Office of Basic Energy Sciences, under grant DE-FG02-03ER15408 is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitry Zemlyanov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zemlyanov, D., Klötzer, B., Gabasch, H. et al. Kinetics of Palladium Oxidation in the mbar Pressure Range: Ambient Pressure XPS Study. Top Catal 56, 885–895 (2013). https://doi.org/10.1007/s11244-013-0052-z

Download citation

Keywords

  • Ambient-pressure XPS
  • Palladium oxidation
  • Palladium single crystal