Skip to main content
Log in

Low-Temperature Growth of Carbon Nanotubes on Bi- and Tri-metallic Catalyst Templates

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Low temperature growth process of carbon nanotubes (CNTs) over bi-metallic (Co–Fe) and tri-metallic (Ni–Co–Fe) catalysts on Si/Al/Al2O3 substrates is carried out from acetylene precursor using hydrogen, ammonia or nitrogen as a carrier in a low pressure chemical vapor deposition system. Using the tri-metallic Ni–Co–Fe catalyst template, vertically aligned CNTs of ~700 nm length could be grown already at 450 °C within 10 min using ammonia as a carrier. Within the same period of time, on bi-metallic Co–Fe catalyst templates, ~250 nm long aligned nanotubes emerged already at 400 °C in nitrogen carrier. At low temperatures most of the catalyst materials were elevated from the support by the grown nanotubes indicating tip growth mechanism. The structure of catalyst layers and nanotube films was studied using scanning and transmission electron microscopy and atomic force microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bacsa W (2003) In: Bushan B (ed) Springer handbook of nanotechnology, chap. 3, vol. 2. Springer, Berlin

    Google Scholar 

  2. Kordas K, Toth G, Moilanen P, Kumpumaki M, Vahakangas J, Uusimaki A, Vajtai R, Ajayan PM (2007) Appl Phys Lett 90:123105

    Article  Google Scholar 

  3. Wang T, Jeppson K, Ye L, Liu J (2011) Small 7:2313

    Article  CAS  Google Scholar 

  4. Halonen N, Kordas K, Toth G, Mustonen T, Maklin J, Vahakangas J, Ajayan PM, Vajtai R (2008) J Phys Chem C 112:6723

    Article  CAS  Google Scholar 

  5. Jiang J, Feng T, Zhang JH, Cheng XH, Chao GB, Jiang BY, Wang YJ, Wang X, Liu XH, Zou SC (2006) Appl Surf Sci 252:2938

    Article  CAS  Google Scholar 

  6. Jung YJ, Wei BQ, Vajtai R, Ajayan PM (2003) Nano Lett 3:561

    Article  CAS  Google Scholar 

  7. Mata D, Silva RM, Fernandes AJS, Oliveira FJ, Costa PMFJ, Silva RF (2012) Carbon 50:3585

    Article  CAS  Google Scholar 

  8. Mizuno K, Hata K, Saito T, Ohshima S, Yumura M, Iijima S (2005) J Phys Chem B 109:2632

    Article  CAS  Google Scholar 

  9. Radhakrishnan JK, Pandian PS, Padaki VC, Bhusan H, Rao KUB, Xie J, Abraham JK, Varadan VK (2009) Appl Surf Sci 255:6325

    Article  CAS  Google Scholar 

  10. Wei BQ, Vajtai R, Jung Y, Ward J, Zhang R, Ramanath G, Ajayan PM (2002) Nature 416:495

    Article  CAS  Google Scholar 

  11. Zhan ZY, Zhang YN, Sun GZ, Zheng LX, Liao K (2011) Appl Surf Sci 257:7704

    Article  Google Scholar 

  12. Dubosc M, Casimirius S, Besland M-P, Cardinaud C, Granier A, Duvail J, Gohier A, Minéa T, Arnal V, Torres J (2007) Microelectron Eng 84:2501

    Article  CAS  Google Scholar 

  13. Hofmann S, Ducati C, Robertson J, Kleinsorge B (2003) Appl Phys Lett 83:135

    Article  CAS  Google Scholar 

  14. Hofmann S, Kleinsorge B, Ducati C, Ferrari A, Robertson J (2004) Diam Relat Mater 13:1171

    Article  CAS  Google Scholar 

  15. Kang H, Yoon H, Kim C, Hong J, Han I, Cha S, Song B, Jung J, Lee N, Kim J (2001) Chem Phys Lett 349:196

    Article  CAS  Google Scholar 

  16. Kyung S, Lee Y, Kim C, Lee J, Yeom G (2006) Carbon 44:1530

    Article  CAS  Google Scholar 

  17. Shiratori Y, Hiraoka H, Takeuchi Y, Itoh S, Yamamoto M (2003) Appl Phys Lett 82:2485

    Article  CAS  Google Scholar 

  18. Show Y (2011) Diam Relat Mater 20:1081

    Article  CAS  Google Scholar 

  19. Srivastava SK, Vankar VD, Kumar V (2008) Nanoscale Res Lett 3:25

    Article  CAS  Google Scholar 

  20. Wang H, Moore JJ (2012) Carbon 50:1235

    Article  CAS  Google Scholar 

  21. Nessim GD, Seita M, Plata DL, O’Brien KP, Hart AJ, Meshot ER, Reddy CM, Gschwend PM, Thompson CV (2011) Carbon 49:804

    Article  CAS  Google Scholar 

  22. Wang X, Zhang Y, Haque MS, Teo KBK, Mann M, Unalan HE, Warburton PA, Udrea F, Milne WI (2012) IEEE Trans Nanotechnol 11:215

    Article  Google Scholar 

  23. Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari A, Blackburn A, Wang K, Robertson J (2006) Nano Lett 6:1107

    Article  CAS  Google Scholar 

  24. Tsai T, Tai N, Chen KC, Lee SH, Chan LH, Chang YY (2009) Diam Relat Mater 18:307

    Article  CAS  Google Scholar 

  25. Halonen N, Sapi A, Nagy L, Puskas R, Leino AR, Maklin J, Kukkola J, Toth G, Wu MC, Liao HC, Su WF, Shchukarev A, Mikkola JP, Kukovecz A, Konya Z, Kordas K (2011) Phys Stat Sol B 248:2500

    Article  CAS  Google Scholar 

  26. Terrado E, Tacchini I, Benito AM, Maser WK, Martínez MT (2009) Carbon 47:1989

    Article  CAS  Google Scholar 

  27. Lee S, Chang Y, Lee L (2008) N Carbon Mater 23:302

    Article  Google Scholar 

  28. Mattevi C, Tobias Wirth C, Hofmann S, Blume R, Cantoro M, Ducati C, Cepek C, Knop-Gericke A, Milne S, Castellarin-Cudia C, Dolafi S, Goldoni A, Schloegl R, Robertson J (2008) J Phys Chem C 112:12207

    Article  CAS  Google Scholar 

  29. Azam MA, Fujiwara A, Shimoda T (2011) Appl Surf Sci 258:873

    Article  CAS  Google Scholar 

  30. Zhang R, Amlani L, Baker J, Tresek J, Tsui R (2003) Nano Lett 3:731

    Article  CAS  Google Scholar 

  31. Durán RP, Amorebieta VT, Colussi AJ (1988) J Phys Chem 92:636

    Article  Google Scholar 

  32. Back MH (1971) Can J Chem 49:2199

    Article  CAS  Google Scholar 

  33. Tanzawa T, Gardiner W (1980) J Phys Chem 84:236

    Article  CAS  Google Scholar 

  34. Ajayan P (2004) Nature 427:426

    Article  Google Scholar 

  35. Harris P (2007) Carbon 45:229

    Article  CAS  Google Scholar 

  36. Wirth CT, Hofmann S, Robertson J (2009) Diam Relat Mater 18:940

    Article  CAS  Google Scholar 

  37. Hofmann S, Blume R, Wirth C, Cantoro M, Sharma R, Ducati C, Hävecker M, Zafeiratos S, Schnoerch P, Oestereich A, Teschner D, Albrecht M, Knop-Gericke A, Schlögl R, Robertson J (2009) J Phys Chem C 113:1648

    Article  CAS  Google Scholar 

  38. Feng J, Zeng HC (2005) J Phys Chem B 109:17113

    Article  CAS  Google Scholar 

  39. Juang ZY, Chien IP, Lai JF, Lai TS, Tsai CH (2004) Diam Relat Mater 13:1203

    Article  CAS  Google Scholar 

  40. Choi KS, Cho YS, Hong SY, Park JB, Kim DJ (2001) J Eur Ceram Soc 21:2095

    Article  CAS  Google Scholar 

  41. Lander JJ, Kern HE, Beach AL (1952) J Appl Phys 23:1305

    Article  CAS  Google Scholar 

  42. Ishida K, Nishizawa T (1991) J Phase Equil 12:417

    Article  CAS  Google Scholar 

  43. ASM Handbook Committee (1974) Metals handbook vol. 8: metallography, structures and phase diagrams. American Society for Metals, Metals Park

    Google Scholar 

  44. Atkins P, de Paula J (2006) Atkins’ physical chemistry, 8th edn. Oxford University Press, Oxford

    Google Scholar 

  45. Kittel C (1971) Introduction to solid state physics, 4th edn. Wiley, New York

    Google Scholar 

  46. Wu TM (2005) Carbon nanotube applications for CMOS back-end processing. Diploma Thesis, Massachusetts Institute of Technology

  47. Chen GY, Jensen B, Stolojan V, Silva SRP (2011) Carbon 49:280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.H., A.-R.L. and G.T are grateful for the support from the NGS-Nano, GETA and Academy of Finland, respectively. The work is financed by the projects Thema-CNT (EU FP7) and RoCaNaMe (Academy of Finland) programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kordás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitkänen, O., Halonen, N., Leino, AR. et al. Low-Temperature Growth of Carbon Nanotubes on Bi- and Tri-metallic Catalyst Templates. Top Catal 56, 522–526 (2013). https://doi.org/10.1007/s11244-013-0047-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0047-9

Keywords

Navigation