Skip to main content

Advertisement

Log in

Effect of Gas Atmosphere on Catalytic Behaviour of Zirconia, Ceria and Ceria–Zirconia Catalysts in Valeric Acid Ketonization

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ketonization of valeric acid, which can be obtained by lignocellulosic biomass conversion, was carried out in a fixed bed flow reactor over ZrO2, 5–20 % CeO2/ZrO2 and CeO2 both under hydrogen and nitrogen stream at 628 K and atmospheric pressure. Regardless gas-carrier 10 wt% CeO2/ZrO2 was found to show higher catalytic activity compared to zirconia per se as well as other ceria modified zirconia while ceria per se exhibited very low catalytic activity. All catalysts provided higher acid conversion in H2 than in N2 whereas selectivity to 5-nonanone was insensitive to gas atmosphere. XRD, FTIR, UV–Vis DRS, XPS, HRTEM methods were applied to characterize catalysts in reduced and unreduced states simulating corresponding reaction conditions during acid ketonization. XRD did not reveal any changes in zirconia and ceria/zirconia lattice parameters as well as crystalline phase depending on gas atmosphere while insertion of ceria in zirconia caused notable increase in lattice parameter indicating some distortion of crystalline structure. According to XPS, FTIR and UV–Vis methods, the carrier gas was found to affect catalyst surface composition leading to alteration in Lewis acid sites ratio. Appearance of Zr3+ cations was observed on the ZrO2 surface after hydrogen pretreatment whereas only Zr4+ cations were determined using nitrogen as a gas-carrier. These changes of catalyst’s surface cation composition affected corresponding activity in ketonization probably being crucial for reaction mechanism involving metal cations catalytic centers for acid adsorption and COO stabilization at the initial step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  2. Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Green Chem 12:574–577

    Article  CAS  Google Scholar 

  3. Malhotra SL, Wong RW, Breton MP (2002) Patent US 6461417

  4. Westfechtel A, Breucker C, Gutsche B, Jeromin L, Eierdanz H, Baumann H, Schmid KH, Nonnenkamp W (1993) Patent DE 4121117

  5. Seipel W, Hensen H, Boyxen N (2001) Patent DE 19958521

  6. Tomlinson AD (2001) Patent WO 2001094522

  7. Glinski M, Kijenski J, Jakubowski A (1995) Appl Catal A Gen 128:209–217

    Article  CAS  Google Scholar 

  8. Glinski M, Kijenski J (2000) React Kinet Catal Lett 69:123–128

    Article  CAS  Google Scholar 

  9. Parida K, Mishra HK (1999) J Mol Catal A Chem 139:73–80

    Article  CAS  Google Scholar 

  10. Serrano-Ruiz JC, Dumesic JA (2009) Green Chem 11:1101–1104

    Article  CAS  Google Scholar 

  11. Serrano-Ruiz JC, Dumesic JA (2009) ChemSusChem 2:581–586

    Article  CAS  Google Scholar 

  12. Leung A, Boocock DGB, Konar SK (1995) Energy Fuels 9:913–920

    Article  CAS  Google Scholar 

  13. Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2010) Ind Eng Chem Res 49:6027–6033

    Article  CAS  Google Scholar 

  14. Saito N (1996) Patent JP 08198796

  15. Yakerson VI, Rubinshtein AM, Gorskaya LA (1970) Patent GB 1208802

  16. Graille J, Pioch D (1991) Patent EP 457665

  17. Pioch D, Lescure R, Graille J (1995) Ol Corps Gras Lipides 2:386–389

    CAS  Google Scholar 

  18. Mueller-Erlwein E, Rosenberger B (1990) Chem Ing Tech 62:512–513

    Article  CAS  Google Scholar 

  19. Corma A, Renz M, Schaverien C (2008) ChemSusChem 1:739–741

    Article  CAS  Google Scholar 

  20. Bayer (1911) Patent DE 256622

  21. Vavon G, Apchie A (1928) Bull Soc Chim 43:667–677

    CAS  Google Scholar 

  22. Thorpe JF, Kon GAR (1941) Org Synth 1:192–194

    Google Scholar 

  23. Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) J Mol Catal A Chem 227:231–239

    Article  CAS  Google Scholar 

  24. Klein-Homann W (1988) Patent DE 3709765

  25. Stubenrauch J, Brisha E, Vohs JM (1996) Catal Today 28:431–441

    Article  CAS  Google Scholar 

  26. Pulido A, Oliver-Tomas B, Renz M, Boronat M, and Corma A (2013) ChemSusChem 6:141–151

  27. Hendren TS, Dooley KM (2003) Catal Today 85:333–351

    Article  CAS  Google Scholar 

  28. Novothy R, Paulsen S (1963) Patent DE 1158050

  29. Kim KS, Barteau MA (1990) J Catal 125:353–375

    Article  CAS  Google Scholar 

  30. Pestman R, Van Duijne A, Pieterse JAZ, Ponec V (1995) J Mol Catal A 103:175–180

    Article  CAS  Google Scholar 

  31. Martinez R, Huff MC, Barteau MA (2004) J Catal 222:404–409

    Article  CAS  Google Scholar 

  32. Matsuoka K, Tagawa K (1985) Patent JP 61207354

  33. Shutilov AA, Simonov MN, Zaytseva YuA, Zenkovets GA, and Simakova IL (2013) Kinet Catal 54:184–192

    Google Scholar 

  34. Kuriacose JC, Swaminathan R (1969) J Catal 14:348–354

    Article  CAS  Google Scholar 

  35. Swaminathan R, Kuriacose JC (1970) J Catal 16:357–362

    Article  CAS  Google Scholar 

  36. Cressely J, Farkhani D, Deluzarche A, Kiennemann A (1984) Mater Chem Phys 11:413–431

    Article  CAS  Google Scholar 

  37. Kuriacose JC, Jewur SS (1977) J Catal 50:330–341

    Article  CAS  Google Scholar 

  38. Renz M, Corma A (2004) Eur J Org Chem 2004:2036–2039

    Article  Google Scholar 

  39. Taimoor AA, Favre-Reguillon A, Vanoye L, Pitault I (2012) Catal Sci Technol 2:359–363

    Article  CAS  Google Scholar 

  40. Kustov LM (1997) Top Catal 4:131–144

    Article  CAS  Google Scholar 

  41. Emmanuel NM (1978) Usp Khim 8:1329–1396

    Google Scholar 

  42. Kaspar J, Fornasiero P (2002) In: Trovarelli A (ed) Catalysis by ceria and related materials. Imperial College Press, London

    Google Scholar 

  43. Reddy DD, Chowdhury B, Smirniotis PG (2001) Appl Catal A Gen 211:19–30

    Article  CAS  Google Scholar 

  44. Rango R, Kaspar G, Meriani S, di Monte R, Graziani M (1994) Catal Lett 24:107–112

    Article  Google Scholar 

  45. Rao G, Sahu H (2001) Proc Indian Acad Sci (Chem Sci) 113:651–658

    Article  CAS  Google Scholar 

  46. Navío JA, Hidalgo MC, Colón G, Botta SG, Litter MI (2001) Langmuir 17:202–210

    Article  Google Scholar 

  47. Timofeeva MN, Jhung SH, Hwang YK, Kim DK, Panchenko VN, Melgunov MS, Chesalov YA, Chang JS (2007) Appl Catal A Gen 317:1–10

    Article  CAS  Google Scholar 

  48. Kaneko H, Taku S, Tamaura Y (2011) Sol Energy 85:2321–2330

    Article  CAS  Google Scholar 

  49. Maia TA, Assaf JM, Assaf EM (2012) Mater Chem Phys 132:1029–1034

    Article  CAS  Google Scholar 

  50. Zhou HP, Si R, Song WG, Yan CH (2009) J Solid State Chem 182:2475–2485

    Article  CAS  Google Scholar 

  51. Si R, Zhang YW, Li SJ, Lin BX, Yan CH (2004) J Phys Chem B 108:12481–12488

    Article  CAS  Google Scholar 

  52. Hadjivanov KI, Vayssilov GN (2002) Adv Catal 47:307–511

    Article  Google Scholar 

  53. Vivier L, Duprez D (2010) ChemSusChem 3:654–678

    Article  CAS  Google Scholar 

  54. Vidruk R, Landau MV, Herskowitz M, Ezersky V, Goldbourt A (2011) J Catal 282:215–227

    Article  CAS  Google Scholar 

  55. Binet C, Daturi M, Lavalley JC (1999) Catal Today 50:207–225

    Article  CAS  Google Scholar 

  56. Conesa J (1995) Surf Sci 339:337–352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Russian Foundation of Basic Research (RFBR Grant No 11-03-94001-CSIC) is gratefully acknowledged. This work was supported by the Federal Program “Scientific and Educational Cadres of Russia” (Grant No 2012-1.5-12-000-1013-002). The authors also wish to thank Dr. Evgeniy Gerasimov, Dr. Igor Prosvirin, Dr. Demid Demidov from the Department of Physicochemical Methods at the Boreskov Institute of Catalysis for TEM and XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Simakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaytseva, Y.A., Panchenko, V.N., Simonov, M.N. et al. Effect of Gas Atmosphere on Catalytic Behaviour of Zirconia, Ceria and Ceria–Zirconia Catalysts in Valeric Acid Ketonization. Top Catal 56, 846–855 (2013). https://doi.org/10.1007/s11244-013-0045-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0045-y

Keywords

Navigation