Skip to main content
Log in

A DFT Study of Ethylene Hydrogenation Reaction Mechanisms on Ni13 Nanocluster

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Metal nanoclusters can potentially exhibit high catalytic activity and selectivity due to not only a high number of exposed surface atoms but also active sites with different coordination numbers as compared to bulk catalyst surface. In this study ethylene hydrogenation was used as a model reaction in an effort to elaborate reactivity of small Ni nanoclusters and the ethylene hydrogenation reaction mechanism. Two mechanistic pathways; representing Eley–Rideal and Horiuti–Polanyi type of mechanism for ethylene hydrogenation reaction are studied. It has been concluded that Horiuti–Polanyi type is more favorable when compared to Eley–Rideal type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bernardo CGPM, Gomes JANF (2001) J Mol Struct (Theochem) 542:263

    Article  CAS  Google Scholar 

  2. Schmid G, Maihack V, Lantermann F, Peschel S (1996) J Chem Soc Dalton Trans 589

  3. Laidler KJ, Townshend RE (1961) Trans Faraday Soc 57:1590. doi:10.1039/TF9615701590

    Article  CAS  Google Scholar 

  4. Egawa C, Osawa S, Oki S (2003) Surf Sci 529:349

    Article  CAS  Google Scholar 

  5. Horiuti J, Polanyi M (1934) Trans Faraday Soc 30:1164. doi:10.1039/TF9343001164

    Article  Google Scholar 

  6. Neurock M, van Santen RA (2000) J Phys Chem B 104:11127

    Article  CAS  Google Scholar 

  7. Harinipriya S, Sangaranarayanan MV (2004) J Mol Catal A 207:105

    Google Scholar 

  8. Daley SP, Utz AL, Trautman TR, Ceyer ST (1994) J Am Chem Soc 116:6001

    Article  CAS  Google Scholar 

  9. Yilmazer ND, Fellah MF, Onal I (2010) Appl Surf Sci 256:5088

    Article  CAS  Google Scholar 

  10. Kohn W, Shamn LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  12. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  13. Becke AD, Roussel MR (1989) Phys Rev A 39:3761

    Article  CAS  Google Scholar 

  14. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  15. Baker J, Muir M, Andzelm J, Scheiner A (1996) ACS Symp Ser 629:342

    Article  CAS  Google Scholar 

  16. Zdetsis AD, Koukaras EN, Garoufalis CS (2009) J Math Chem 46:971

    Article  CAS  Google Scholar 

  17. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  18. Yanagisawa S, Tsuneda T, Hirao K (2000) J Chem Phys 112:545

    Article  CAS  Google Scholar 

  19. Onal I, Sayar A, Uzun A, Ozkar S (2009) J Comput Theor Nanosci 6:867

    Article  CAS  Google Scholar 

  20. Young DC (2001) Computational chemistry., 2001Wiley, New York, p 228

    Book  Google Scholar 

  21. Schlegel HB (1982) J Comput Chem 3:214

    Article  CAS  Google Scholar 

  22. Lide DR (ed) (2008–2009) The CRC Handbook of Chemistry and Physics, 89th edn. CRC Press, Boca Raton 12–39

Download references

Acknowledgments

The numerical calculations reported in this paper were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Yilmazer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (740 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmazer, N.D., Fellah, M.F. & Onal, I. A DFT Study of Ethylene Hydrogenation Reaction Mechanisms on Ni13 Nanocluster. Top Catal 56, 789–793 (2013). https://doi.org/10.1007/s11244-013-0043-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0043-0

Keywords

Navigation