Skip to main content
Log in

Pore Condensation in Glycerol Dehydration

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Pore condensation followed by polymerization is proposed as an explanatory model of several observations reported in the literature regarding the dehydration of glycerol to acrolein. The major conclusion is that glycerol pore condensation in the micro- and mesopores, followed by polymerization in the pores, play a role in catalyst deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pagliari M, Rossi M (2008) The future of glycerol. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Werpy TA, Holladay JE, White JF (2004), Top value added chemicals from biomass: I results of screening for potential candidates from sugar and synthesis gas, in, Pacific Richland. NREL, Washington, D.C.

  3. Chai SH, Wang HP, Liang Y, Xu BQ (2009) Appl Catal A 353:213

    Article  CAS  Google Scholar 

  4. Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Catal Commun 8:1349

    Article  CAS  Google Scholar 

  5. Shen L, Feng Y, Yin H, Wang A, Yu L, Jiang T, Shen Y, Wu Z (2011) J Ind Eng Chem 17:484

    Article  CAS  Google Scholar 

  6. Atia H, Armbruster U, Martin A (2008) J Catal 258:71

    Article  CAS  Google Scholar 

  7. Kim YT, Jung K-D, Park ED (2011) Appl Catal B 107:177

    Article  CAS  Google Scholar 

  8. Atia H, Armbruster U, Martin A (2011) Appl Catal A 393: 331

    Google Scholar 

  9. Suprun W, Lutecki M, Papp H (2011) Chem Eng Technol 34:134

    Article  CAS  Google Scholar 

  10. Suprun W, Lutecki M, Haber T, Papp H (2009) J Mol Catal A 309:71

    Article  CAS  Google Scholar 

  11. Suprun W, Lutecki M, Gläser R, Papp H (2011) J Mol Catal A 342–343:91

    Google Scholar 

  12. Ágnes Z, Péter B, Mónika F, Ferenc N (2010) J Environ Prot 1:201

    Article  Google Scholar 

  13. Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2010) Appl Catal A 378: 11

    Google Scholar 

  14. Munshi Mudassir K, Lomate Samadhan T, Deshpande Raj M, Rane Vilas H, Kelkar Ashutosh A (2010) J Chem Technol Biotechnol 85:1319

    Article  Google Scholar 

  15. Katryniok B, Paul S, Capron M, Lancelot C, Belliere-Baca V, Rey P, Dumeignil F (2010) Green Chem 12:1922

    Article  CAS  Google Scholar 

  16. Chai S-H, Wang H-P, Liang Y, Xu B-Q (2007) Green Chem 9:1130

    Article  CAS  Google Scholar 

  17. Chai S-H, Wang H-P, Liang Y, Xu B-Q (2008) Green Chem 10:1087

    Article  CAS  Google Scholar 

  18. Shiju NR, Brown DR, Wilson K, Rothenberg G (2010) Topics Catal 53:1217

    Article  CAS  Google Scholar 

  19. Kim YT, Jung K-D, Park ED (2011) Appl Catal A 393:275

    Article  CAS  Google Scholar 

  20. Yoda E, Ootawa A (2009) Appl Catal A 360:66

    Article  CAS  Google Scholar 

  21. Kim YT, Jung KD, Park ED (2010) Microporous Mesoporous Mater 131:28

    Article  CAS  Google Scholar 

  22. de Oliveira AS, Vasconcelos SJS, de Sousa JR, de Sousa FF, Filho JM, Oliveira AC (2011) Chem Eng J 168:765

    Article  Google Scholar 

  23. Corma A, Huber GW, Sauvanaud L, Connor P (2008) J Catal 257:163

    Article  CAS  Google Scholar 

  24. Lauriol-Garbey P, Postole G, Loridant S, Auroux A, Belliere-Baca V, Rey P, Millet JMM (2011) Appl Catal B 106:94

    CAS  Google Scholar 

  25. Deleplanque J, Dubois JL, Devaux JF, Ueda W (2010) Catal Today 157:351

    Article  CAS  Google Scholar 

  26. Chai S-H, Wang H-P, Liang Y, Xu B-Q (2007) J Catal 250:342

    Article  CAS  Google Scholar 

  27. Lauriol-Garbey P, Millet JMM, Loridant S, Belliere-Baca V, Rey P (2011) J Catal 281:362

    Article  CAS  Google Scholar 

  28. Tao L-Z, Chai S-H, Zuo Y, Zheng W-T, Liang Y, Xu B-Q (2010) Catal Today 158:310

    Article  CAS  Google Scholar 

  29. Ulgen A, Hoelderich W (2009) Catal Lett 131:122

    Article  CAS  Google Scholar 

  30. Ulgen A, Hoelderich WF (2011) Appl Catal A 400:34

    Article  CAS  Google Scholar 

  31. Lauriol-Garbay P, Millet JMM, Loridant S, Bellière-Baca V, Rey P (2011) J Catal 280:68

    Article  CAS  Google Scholar 

  32. Cavani F, Guidetti S, Marinelli L, Piccinini M, Ghedini E, Signoretto M (2010) Appl Catal B 100:197

    Article  CAS  Google Scholar 

  33. Cavani F, Guidetti S, Trevisanut C, Ghedini E, Signoretto M (2011) Appl Catal A 409–410:267

    Google Scholar 

  34. Katryniok B, Paul S, Belliere-Baca V, Rey P, Dumeignil F (2010) Green Chem 12:2079

    Article  CAS  Google Scholar 

  35. Katryniok B, Paul S, Capron M, Dumeignil F (2009) ChemSusChem 2:719

    Article  CAS  Google Scholar 

  36. ten Dam J, Hanefeld U (2011) ChemSusChem 4: 1017

  37. Nimlos MR, Blanksby SJ, Qian X, Himmel ME, Johnson DK (2006) J Phys Chem A 110:6145

    Article  CAS  Google Scholar 

  38. Laino T, Tuma C, Curioni A, Jochnowitz E, Stolz S (2011) J Phys Chem A 115:3592

    Article  CAS  Google Scholar 

  39. Sun W, Liu J, Chu X, Zhang C, Liu C (2010) J Mol Struct 942:38

    Article  CAS  Google Scholar 

  40. Wang F, Dubois J-L, Ueda W (2010) Appl Catal A 376: 25

    Google Scholar 

  41. Wang F, Dubois J-L, Ueda W (2009) J Catal 268:260

    Article  CAS  Google Scholar 

  42. Erfle S, Armbruster U, Bentrup U, Martin A, Brückner A (2011) Appl Catal A 391: 102

    Google Scholar 

  43. Monson PA (2008) Langmuir 24:12295

    Article  CAS  Google Scholar 

  44. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  45. Halsey G (1948) J Chem Phys 16:931

    Article  CAS  Google Scholar 

  46. Gallant RW (1967) Hydrocarbon Process 46:201

    CAS  Google Scholar 

  47. Ma J, Jing G, Chen S, Yu D (2009) J Phys Chem C 113:16169

    Article  CAS  Google Scholar 

  48. Zyuzin DA, Cherepanova SV, Moroz EM, Burgina EB, Sadykov VA, Kostrovskii VG, Matyshak VA (2006) J Solid State Chem 179:2965

    Article  CAS  Google Scholar 

  49. Mörtstedt SE, Hellsten G (1999) Data och diagram, Liber

  50. Karakonstantis L, Matralis H, Kordulis C, Lycourghiotis A (1996) J Catal 162:306

    Article  CAS  Google Scholar 

  51. Bartholomew CH (1982) Catal Rev 24:67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Ingemar Odenbrand for critically reviewing the paper and giving feedback and Mrs. Birgitta Lindén for performing BET and MIP analysis. The financial support from the Swedish gas centre and the Swedish knowledge centre for renewable transportation fuels are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hulteberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulteberg, C., Leveau, A. & Brandin, J.G.M. Pore Condensation in Glycerol Dehydration. Top Catal 56, 813–821 (2013). https://doi.org/10.1007/s11244-013-0039-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0039-9

Keywords

Navigation