Skip to main content
Log in

In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Herein, the desolvation, dehydroxylation and rehydroxylation of the metal organic frameworks UiO-66 and -67 are followed by in situ DRIFTS and TG–DSC. The spectra recorded on UiO-66 feature multiple bands corresponding to chemically inequivalent isolated hydroxyl groups, whereas UiO-67 has the expected single μ3-OH band from the Zr6O4(OH)4 cornerstone. Complete rehydration is demonstrated on both materials. Based on further experimental insights, hypotheses are given to explain the observed differences between UiO-66 and -67. Quantum chemical calculations are employed in order to deduce the feasibility of one possible explanation for the observed behaviour on UiO-66.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  2. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705–714

    Article  CAS  Google Scholar 

  3. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Chem Mater 22:6632–6640

    Article  CAS  Google Scholar 

  4. Foo ML, Horike S, Fukushima T, Hijikata Y, Kubota Y, Takata M, Kitagawa S (2012) Dalton Trans 41:13791–13794

    Google Scholar 

  5. Wang C, Xie ZG, de Krafft KE, Lin WL (2011) J Am Chem Soc 133:13445–13454

    Article  CAS  Google Scholar 

  6. Yuan DQ, Zhao D, Sun DF, Zhou HC (2010) Angew Chem Int Ed 49:5357–5361

    Article  CAS  Google Scholar 

  7. Furukawa H, Kim J, Ockwig NW, O’Keeffe M, Yaghi OM (2008) J Am Chem Soc 130:11650–11661

    Article  CAS  Google Scholar 

  8. Garibay SJ, Cohen SM (2010) Chem Commun 46:7700–7702

    Article  CAS  Google Scholar 

  9. Morris W, Volosskiy B, Demir S, Gandara F, McGrier PL, Furukawa H, Cascio D, Stoddart JF, Yaghi OM (2012) Inorg Chem 51:6443–6445

    Article  CAS  Google Scholar 

  10. Schaate A, Roy P, Preusse T, Lohmeier SJ, Godt A, Behrens P (2011) Chem Eur J 17:9320–9325

    Article  CAS  Google Scholar 

  11. Jiang H-L, Feng D, Liu T-F, Li J-R, Zhou H-C (2012) J Am Chem Soc 36:14690–14693

    Article  Google Scholar 

  12. Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C (2011) Chem Mater 23:1700–1718

    Article  CAS  Google Scholar 

  13. Vermoortele F, Vandichel M, Van B, de Voorde R, Ameloot M, Waroquier V, Van Speybroeck DE, Vos De (2012) Angew Chem Int Ed 51:4887–4890

    Article  CAS  Google Scholar 

  14. Larabi C, Quadrelli EA (2012) Eur J Inorg Chem 18:3014–3022

    Google Scholar 

  15. Wiersum AD, Soubeyrand-Lenoir E, Yang QY, Moulin B, Guillerm V, Ben Yahia M, Bourrelly S, Vimont A, Miller S, Vagner C, Daturi M, Clet G, Serre C, Maurin G, Llewellyn PL (2011) Chem Asian J 6:3270–3280

    Article  CAS  Google Scholar 

  16. Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P (2011) Chem Eur J 17:6643–6651

    Article  CAS  Google Scholar 

  17. Frisch MJ (2009) Gaussian 09 Rev A.02. Gaussian Inc., Wallingford, CT

  18. Eichkorn K, Weigend F, Treutler O, Ahlichs R (1997) Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  19. Schaefer A, Horn H, Ahlichs R (1992) J Chem Phys 97:2571–2577

    Article  CAS  Google Scholar 

  20. Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Google Scholar 

Download references

Acknowledgments

Thanks are due to the Research Council of Norway for grant of computer time through the NOTUR project) account NN4683K). This publication forms a part of the inGAP Center of Research-based innovation, which receives financial support from the Research Council of Norway under Contract 174893.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Silvia Bordiga or Stian Svelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shearer, G.C., Forselv, S., Chavan, S. et al. In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67. Top Catal 56, 770–782 (2013). https://doi.org/10.1007/s11244-013-0027-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0027-0

Keywords

Navigation