Skip to main content
Log in

Total Oxidation of Dichloromethane Over Metal Oxide Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Three different transition metals (V, Mn and Cu) supported on TiO2, MgO and CeO2, were investigated for their performances in dichloromethane oxidation (500 ppm, 704,867 h−1) in moist conditions as a model reaction for the destruction of chlorinated volatile organic compounds. The catalysts were prepared by sol–gel method followed by wet impregnation of V, Mn or Cu precursors. The activities were evaluated in the temperature range from 100 to 500 °C with 5 °C min−1 temperature rise. The orders of activity and selectivity to HCl of the catalysts is CuTi > VMg > CuCe > CuMg. A correlation between acidic properties of support and performances was observed as the activity of copper catalysts followed the acidity order of supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ojala S, Pitkäaho S, Laitinen T, Niskala N, Brahmi R, Gaálová J, Matejova L, Kucherov A, Päivärinta S, Hirschmann C, Nevanperä T, Riihimäki M, Pirilä M, Keiski RL (2011) Top Catal 54:1224–1256

    Article  CAS  Google Scholar 

  2. Liu Y, Luo M, Wei Z, Xin Q, Ying P, Li C (2001) Appl Catal B 29:61–67

    Article  CAS  Google Scholar 

  3. Vu VH, Belkouch J, Ould-Driss A, Taouk B (2009) J Hazard Mater 169:758–765

    Article  CAS  Google Scholar 

  4. Miranda B, Díaz E, Ordóñez S, Vega A, Díez FV (2007) Chemosphere 66:1706–1715

    Article  CAS  Google Scholar 

  5. Tseng TK, Wang L, Ho CT, Chu H (2010) J Hazard Mater 178:1035–1040

    Article  CAS  Google Scholar 

  6. Saleh FS, Rahman MM (2009) J Hazard Mater 162:1574–1577

    Article  CAS  Google Scholar 

  7. Saqer SM, Kondarides DI, Verykios XE (2011) Appl Catal B 103:275–286

    Article  CAS  Google Scholar 

  8. Gutiérrez-Ortiz JI, López-Fonseca R, Aurekoetxea U, González-Velasco JR (2003) J Catal 218:148–154

    Article  Google Scholar 

  9. Pitkäaho S, Matejova L, Ojala S, Gaalovab J, Keiski RL (2012) Appl Catal B 113–114:150–159

    Google Scholar 

  10. Pitkäaho S, Ojala S, Maunula T, Savimaki A, Kinnunen T, Keiski RL (2011) Appl Catal B 102:395–403

    Article  Google Scholar 

  11. Wang X, Kang Q, Li D (2008) Catal Commun 9:2158–2162

    Article  CAS  Google Scholar 

  12. Windawi H, Zhang ZC (1996) Catal Today 30:99–105

    Article  CAS  Google Scholar 

  13. Corella J, Toledo JM, Padilla AM (2000) Appl Catal B 27:243–256

    Article  CAS  Google Scholar 

  14. der Avert PV, Wechkhuysen BM (2004) Phys Chem Chem Phys 6:5256–5262

    Article  Google Scholar 

  15. Fenelonov VB, Mel’gunov MS, Mishakov IV, Richards RM, Chesnokov VV, Volodin AM, Klabunde KJ (2001) J Phys Chem B 105:3937–3941

    Article  CAS  Google Scholar 

  16. Weiss U, Rosynek MP, Lunsford J (2000) Chem Commun 5:405–406

    Article  Google Scholar 

  17. Gutiérrez-Ortiz JI, de Rivas B, López-Fonseca R, González-Velasco JR (2004) Appl Catal A 269:147–155

    Article  Google Scholar 

  18. Bertinchamps F, Poleunis C, Gregoire C, Eloy P, Bertrand P, Gaigneaux EM (2008) Surf Interface Anal 40:231–236

    Article  CAS  Google Scholar 

  19. Yang CC, Chang SH, Hong BZ, Chi KH, Chang MB (2008) Chemosphere 73:890–895

    Article  CAS  Google Scholar 

  20. Gu Y, Yang Y, Qiu Y, Sun K, Xu X (2010) Catal Commun 12:277–281

    Article  CAS  Google Scholar 

  21. Ma X, Sun H, Sun Q, Feng X, Guo H, Fan B, Zhao S, He X, Lv L (2011) Catal Commun 12:426–430

    Article  CAS  Google Scholar 

  22. Manahan SE (1991) Environmental chemistry, 5th edn. Lewis Publishers, Michigan

    Google Scholar 

  23. Dai Q, Wang X, Lu G (2007) Catal Commun 8:1645–1649

    Article  CAS  Google Scholar 

  24. Pitkäaho S, Nevanperä T, Matejova L, Ojala S, Keiski RL (2013) App Catal B 138–139:33–42

  25. Wu M, Ung KC, Dai Q, Wang X (2012) Catal Commun 18:72–75

    Article  CAS  Google Scholar 

  26. Padilla AM, Corella J, Toledo JM (1999) Appl Catal B 22:107–121

    Article  CAS  Google Scholar 

  27. Ojala S, Lassi U, Perämäki P, Keiski RL (2008) J Autom Methods Manag Chem 2008:7

    Google Scholar 

  28. Mishakov IV, Vedyagin AA, Bedilo AF, Zaikovskii VI, Klabunde KJ (2009) Catal Today 144:278–284

    Article  CAS  Google Scholar 

  29. Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) Colloids Surf A 190:261–274

    Article  CAS  Google Scholar 

  30. Scire S, Crisafulli C, Maggiore R, Minicò S, Galvagno S (1998) Appl Surf Sci 136:311–320

    Article  CAS  Google Scholar 

  31. Sadiq M, Sahibed-dine A, Baalala M, Nohair K, Abdennouri M, Bensitel M, Lamonier C, Leglise J (2011) Arab J Chem 4:449–457

    Article  CAS  Google Scholar 

  32. Elassal Z, Groula L, Nohair K, Sahibed-dine A, Brahmi R, Loghmarti M, Mzerd A, Bensitel M (2011) Arab J Chem 4:313–319

    Article  CAS  Google Scholar 

  33. Guisnet M, Ayrault P, Datka J (1997) Pol J Chem 71:1455–1461

    CAS  Google Scholar 

  34. Pinard L, Majoin J, Ayrault P, Canaff C, Magnoux P (2004) Appl Catal B 51:1–8

    Article  CAS  Google Scholar 

  35. Wang L, Sakurai M, Kameyama H (2008) J Hazard Mater 154:390–395

    Article  CAS  Google Scholar 

  36. van den Brink RW, Mulder P, Louw R, Sinquin G, Petit C, Hindermann J-P (1998) J Catal 180:153–160

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ms Julie Rousseau, Ms Christelle Roudaut and Mr Jean-Dominique Comparot for their help during the characterization of the catalysts in IC2MP-Poitiers. PHC Volubilis is gratefully acknowledged by the authors for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouhair El Assal.

Appendix: HSC Calculation

Appendix: HSC Calculation

1.1 Initial Composition:

Pressure:

1 bar

Raw materials: kmol:

Total: 1 kmol = 1,000 mol

CH2Cl2 (g):

0.48 mol (around 0.5 mol/1,000 mol = 500 ppm)

H2O:

15 mol (15/1,000 = around 1.5 %)

O2 :

200 mol (air : 20 % O2, 80 % N2 so 20 % × 1,000 = 200 mol)

N2 :

784.52 mol (complement to 1 kmol, inert gas in excess)

MgO:

1.8 mol

The reaction between HCl and MgO versus temperature.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Assal, Z., Pitkäaho, S., Ojala, S. et al. Total Oxidation of Dichloromethane Over Metal Oxide Catalysts. Top Catal 56, 679–687 (2013). https://doi.org/10.1007/s11244-013-0025-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0025-2

Keywords

Navigation