Skip to main content
Log in

Structural Characteristics of Natural-Gas-Vehicle-Aged Oxidation Catalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Deactivation of the natural-gas-vehicle-aged Pt/Pd oxidation catalyst supported on γ-alumina-based washcoat was studied by electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and catalytic activity measurements. Significant structural changes were detected in the used catalyst compared to the fresh one. Grain size of the washcoat had grown but its structure had remained the same, γ-alumina, as in the fresh catalyst. Sintering of the noble metal particles had occurred, particle sizes varied from ~5 up to ~100 nm. Decomposition of palladium oxide and platinum oxide to metallic Pd and Pt occurred followed by the formation of the bimetallic Pt/Pd crystals. Also reformation of palladium oxide was detected. In addition, the inlet part of the used catalyst was totally covered by a poisoning layer. Due to these structural changes and poisoning, the activity of the vehicle-aged catalyst had decreased significantly compared to the fresh one. All the changes were stronger in the inlet than in the outlet part of the used catalyst indicating higher operating temperature and more extensive thermal deactivation and poisoning in the inlet than in the outlet part of the converter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gélin P, Primet M (2002) Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal B 39:1–37

    Article  Google Scholar 

  2. Holmgreen E, Yung M, Ozkan U (2007) Dual-catalyst aftertreatment of lean-burn natural gas engine exhaust. Appl Catal B 74:73–82

    Article  CAS  Google Scholar 

  3. Burch R, Urbano F (1995) Investigation of the active state of supported palladium catalysts in the combustion of methane. Appl Catal A 124:121–138

    Article  CAS  Google Scholar 

  4. Farrauto R, Lampert J, Hobson M, Waterman E (1995) Thermal decomposition and reformation of PdO catalysts; support effects. Appl Catal B 6:263–270

    Article  CAS  Google Scholar 

  5. Datye A, Bravo J, Nelson T, Atanasova P, Lyubovsky M, Pfefferle L (2000) Catalyst microstructure and methane oxidation reactivity during the Pd↔PdO transformation on alumina supports. Appl Catal A 198:179–196

    Article  CAS  Google Scholar 

  6. Lyubovsky M, Pfefferle L (1999) Complete methane oxidation over Pd catalyst supported on α-alumina. Influence of temperature and oxygen pressure on the catalyst activity. Catal Today 47:29–44

    Article  CAS  Google Scholar 

  7. Lee J, Trimm D (1995) Catalytic combustion of methane. Fuel Process Technol 42:339–359

    Article  CAS  Google Scholar 

  8. Mowery D, Graboski M, Ohno T, McCormick R (1999) Deactivation of PdO–Al2O3 oxidation catalyst in lean-burn natural gas engine exhaust: aged catalyst characterization and studies of poisoning by H2O and SO2. Appl Catal B 21:157–169

    Article  CAS  Google Scholar 

  9. Yu T-C, Shaw H (1998) The effect of sulphur poisoning on methane oxidation over palladium supported on γ-alumina catalysts. Appl Catal B 18:105–114

    Article  CAS  Google Scholar 

  10. Gélin P, Urfels L, Primet M, Tena E (2003) Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: influence of water and sulphur containing compounds. Catal Today 83:45–57

    Article  Google Scholar 

  11. Euzen P, Le Gal J-H, Rebours B, Martin G (1999) Deactivation of palladium catalyst in catalytic combustion of methane. Catal Today 47:19–27

    Article  CAS  Google Scholar 

  12. Ozawa Y, Tochihara Y, Watanabe A, Nagai M, Omi S (2004) Deactivation of Pt·PdO/Al2O3 in catalytic combustion of methane. Appl Catal A 259:1–7

    Article  CAS  Google Scholar 

  13. Narui K, Yata H, Furuta K, Nishida A, Kohtoku Y, Tokuo M (1999) Effects of addition of Pt to PdO/Al2O3 catalyst on catalytic activity for methane combustion and TEM observations of supported particles. Appl Catal A 179:165–173

    Article  CAS  Google Scholar 

  14. Persson K, Pfefferle L, Schwartz W, Ersson A, Järås S (2007) Stability of palladium-based catalysts during catalytic combustion of methane: the influence of water. Appl Catal B 74:242–250

    Article  CAS  Google Scholar 

  15. Yamamoto H, Uchida H (1998) Oxidation of methane over Pt and Pd supported on alumina in lean-burn natural-gas engine exhaust. Catal Today 45:147–151

    Article  CAS  Google Scholar 

  16. Lapisardi G, Urfels L, Gélin P, Primet M, Kaddouri A, Garbowski E, Toppi S, Tena E (2006) Superior catalytic behaviour of Pt-doped Pd catalysts in the complete oxidation of methane at low temperature. Catal Today 117:564–568

    Article  CAS  Google Scholar 

  17. Persson K, Jansson K, Järås S (2007) Characterisation and microstructure of Pd and bimetallic Pd–Pt catalysts during methane oxidation. J Catal 245:401–414

    Article  CAS  Google Scholar 

  18. Ersson A, Kusar H, Carroni R, Griffin T, Järås S (2003) Catalytic combustion of methane over bimetallic catalysts a comparison between novel annular reactor and high-pressure reactor. Catal Today 83:265–277

    Article  CAS  Google Scholar 

  19. Castellazzi P, Groppi G, Forzatti P (2010) Effect of Pt/Pd ratio on catalytic activity and redox behaviour of bimetallic Pt–Pd/Al2O3 catalysts for CH4 combustion. Appl Catal B 95:303–311

    Article  CAS  Google Scholar 

  20. Ezekoye O, Drews A, Jen H, Kudla R, McCabe R, Sharma M, Howe J, Allard L, Graham G, Pan X (2011) Characterization of alumina-supported Pt and Pt–Pd NO oxidation catalysts with advanced electron microscopy. J Catal 280:125–136

    Article  CAS  Google Scholar 

  21. Graham G, Jen H, Ezekoye O, Kudla R, Chun W, Pan X, McCabe R (2007) Effect of alloy composition on dispersion stability and catalytic activity for NO oxidation over alumina-supported Pt–Pd catalyst. Catal Lett 116:1–8

    Article  CAS  Google Scholar 

  22. Wiebenga M, Kim C, Schmieg S, Oh S, Brown D, Kim D, Lee J-H, Peden C (2012) Deactivation mechanisms of Pt/Pd-based diesel oxidation catalysts. Catal Today 184:197–204

    Article  CAS  Google Scholar 

  23. Shyu J, Otto K (1988) Identification of platinum phases on γ-alumina by XPS. Appl Surf Sci 32:246–252

    Article  CAS  Google Scholar 

  24. Serrano-Ruiz J, Huber G, Sánchez-Castillo M, Dumesic J, Rodríguez-Reinoso F, Sepúlveda-Escribano A (2006) Effect of Sn addition to Pt/CeO2–Al2O3 and Pt/Al2O3 catalysts: an XPS, 119Sn Mössbauer and microcalorimetry study. J Catal 241:378–388

    Article  CAS  Google Scholar 

  25. Olsson L, Fridell E (2002) The influence of Pt oxide formation and Pt dispersion on the reactions NO2 ↔ NO + ½O2 over Pt/Al2O3 and Pt/BaO/Al2O3. J Catal 210:340–353

    Article  CAS  Google Scholar 

  26. Yoshimura Y, Toba M, Matsui T, Harada M, Ichihashi Y, Bando K, Yasuda H, Ishihara H, Morita Y, Kameoka T (2007) Active phases and sulphur tolerance of bimetallic Pd–Pt catalysts used for hydrotreatment. Appl Catal A 322:152–171

    Article  CAS  Google Scholar 

  27. Saenger K, Cabral C, Duncombe R, Grill A, Neumayer D (2000) Oxygen stoichiometry in PdO x and PdO x /Pt electrode layers during processing of ferroelectric and high-epsilon perovskites. J Mater Res 15:961–966

    Article  CAS  Google Scholar 

  28. Hauff K, Tuttlies U, Eigenberger G, Nieken U (2012) Platinum oxide formation and reduction during NO oxidation on a diesel oxidation catalyst—experimental results. Appl Catal B 123–124:107–116

    Google Scholar 

  29. Chen M, Schmidt L (1979) Morphology and composition of Pt–Pd alloy crystallites on SiO2 in reactive atmospheres. J Catal 56:198–218

    Article  CAS  Google Scholar 

  30. Persson K, Ersson A, Jansson K, Fierro J, Järås S (2006) Influence of molar ratio on Pd–Pt catalysts for methane combustion. J Catal 243:14–24

    Article  CAS  Google Scholar 

  31. Penner S, Wang D, Jenewein B, Gabasch H, Kötzer B, Knop-Gericke A, Schlögl R, Hayek K (2006) Growth and decomposition of aligned and ordered PdO nanoparticles. J Chem Phys 125:094703

    Article  Google Scholar 

  32. Morlang A, Neuhausen U, Klementiev K, Schütze F-W, Miehe G, Fuess H, Lox E (2005) Bimetallic Pt/Pd diesel oxidation catalysts structural characterisation and catalytic behaviour. Appl Catal B 60:191–199

    Article  CAS  Google Scholar 

  33. Kim K, Gossmann A, Winograd N (1974) X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode. Anal Chem 46:197–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the Academy of Finland for funding (Decision number 138798).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Honkanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honkanen, M., Kärkkäinen, M., Viitanen, V. et al. Structural Characteristics of Natural-Gas-Vehicle-Aged Oxidation Catalyst. Top Catal 56, 576–585 (2013). https://doi.org/10.1007/s11244-013-0017-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0017-2

Keywords

Navigation