Skip to main content
Log in

Functionalized Activated Carbon Catalysts in Xylose Dehydration

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Acid functionalized activated carbon was studied as a catalyst in xylose dehydration. It was compared with commonly used solid acid catalysts, H-mordenite and TiO2. The carbon surface was modified with H2SO4 and/or HNO3 treatment, resulting in highly active and selective dehydration catalysts that were stable in aqueous reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin Y-C, Huber GW (2009) Energy Environ Sci 2:68

    Article  CAS  Google Scholar 

  2. Stöcker M (2008) Angew Chem Int Ed 47:9200

    Article  Google Scholar 

  3. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  4. Chheda JN, Huber GW, Dumesic JA, Angew (2007) Chem. Int. Ed. 46:7164

    Article  CAS  Google Scholar 

  5. Kooststra AMJ, Mosier NS, Scott EL, Beeftink HH (2009) Biochem Eng J 43:92

    Article  Google Scholar 

  6. Nabarlatz D, Farriol X, Montané D (2004) Ind Eng Chem Res 43:4124

    Article  CAS  Google Scholar 

  7. Karinen R, Vilonen K, Niemelä M (2011) ChemSusChem 4:1002

    Article  CAS  Google Scholar 

  8. Lam E, Chong JH, Majid E, Liu Y, Hrapovic S, Leung ACW, Luong JHT (2012) Carbon 50:1033

    Article  CAS  Google Scholar 

  9. Weingarten R, Tompsett GA, Conner WC Jr, Huber GW (2011) J. Cat. 279:174

    Article  CAS  Google Scholar 

  10. Okuhara T (2002) Chem Rev 102:3641

    Article  CAS  Google Scholar 

  11. Kabalka GW, Pagni RM (1997) Tetrahdedron 53:7999

    Article  CAS  Google Scholar 

  12. Figueiredo JL, Pereira MFR (2010) Cat. Today 150:2

    Article  CAS  Google Scholar 

  13. Toebes ML, van Heeswijk JMP, Bitter JH, van Dillen AJ, de Jong KP (2004) Carbon 42:307

    Article  CAS  Google Scholar 

  14. Dias AS, Pillinger M, Valente AA (2005) J Catal 229:414

    Article  CAS  Google Scholar 

  15. Gregg SJ, Sing KSW (1982) Adsorption Surface Area and Porosity, 2nd edn. Academic Press, New York, p 303

    Google Scholar 

  16. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60(2):309–380

    Article  CAS  Google Scholar 

  17. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73(1):373–380

    Article  CAS  Google Scholar 

  18. Oickle AM, Goertzen SL, Hopper KR, Abdalla YO (2010) Carbon 48:3313

    Article  CAS  Google Scholar 

  19. Salame IS, Bandosz TJ, Colloid J (2001) Interface Sci 240:252

    CAS  Google Scholar 

  20. Onda A, Ochi T, Yanagisawa K (2008) Green Chem 10:1033

    Article  CAS  Google Scholar 

  21. Ranjan R, Thust S, Chrysanthos CE, Gounaris E, Woo M, Floudas CA, von Keitz M, Valentas KJ, Wei J, Tsapatsis M (2009) Microporous Mesoporous Mat. 122:143

    Article  CAS  Google Scholar 

  22. Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA (2012) ChemSusChem 5:1812

    Article  CAS  Google Scholar 

  23. Papp J, Soled S, Dwight K, Wold A (1994) Chem Mater 6:496

    Article  CAS  Google Scholar 

  24. Terzyk AP, Colloid J (2003) Interface Sci 268:301

    CAS  Google Scholar 

  25. Hadjivanov KI, Klissurski DG (1996) Chem Soc Rev 1:61

    Article  Google Scholar 

  26. Sun F, Zhou W, Tian G, Pan K, Miao X, Li Y, Zhang G, Li T, Fu H (2012) ChemCatChem 4:844

    Article  CAS  Google Scholar 

  27. Akiya N, Savage PE (2002) Chem Rev 102:2725

    Article  CAS  Google Scholar 

  28. Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P (1998) Ind Crops Prod 7:95

    Article  CAS  Google Scholar 

  29. Takagaki A, Ohara M, Nishimura S, Ebitani K (2010) Chem Lett 39:838

    Article  CAS  Google Scholar 

  30. Marcotullio G, De Jong W (2010) Green Chem 12:1739

    Article  CAS  Google Scholar 

  31. O’Neil R, Ahmad MN, Vanoye L, Aiouache F (2009) Ind Eng Chem Res 48:4300

    Article  Google Scholar 

  32. Aguado-Serrano J, Rojas-Cervantes ML (2006) Microporous Mesoporous Mat. 88:205

    Article  CAS  Google Scholar 

  33. O’Neill R, Ahmad MN, Vanoye L, Aiouache F (2009) Ind Eng Chem Res 48:4300

    Article  Google Scholar 

  34. Zholobenko VL, Makarova MA, Dwyer J (1993) J Phys Chem 97:5962

    Article  CAS  Google Scholar 

  35. Takagaki, Ohara M, Nishimura S, Ebitani K (2010) Chem Lett 39:838–840

    Article  CAS  Google Scholar 

  36. Watanabe M, Aizawa Y, Ida T, Nishimura R, Inomata H (2005) Appl. Cat. A 295:150–156

    Article  CAS  Google Scholar 

  37. Dias AS, Lim S, Pillinger M, Valente AA (2007) Catal Lett 114:151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The CNB-E project of the Multidisciplinary Institute of Digitalization and Energy (MIDE) program is acknowledged for its financial support. Christa Bonde Jensen, Joonas Likander, and Sergio Gonzalez Rodriguez are acknowledged for their experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Sairanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sairanen, E., Vilonen, K., Karinen, R. et al. Functionalized Activated Carbon Catalysts in Xylose Dehydration. Top Catal 56, 512–521 (2013). https://doi.org/10.1007/s11244-013-0013-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0013-6

Keywords

Navigation