Skip to main content
Log in

Deactivation of a Pt/Silica–Alumina Catalyst and Effect on Selectivity in the Hydrocracking of n-Hexadecane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The deactivation behavior of a bifunctional catalyst consisting of platinum on amorphous silica–alumina was studied in the hydrocracking of n-hexadecane. The initial decline in activity and the change in selectivity were monitored at the following reaction conditions: pressure = 30 bar; temperature = 310 °C; hydrogen-to-hexadecane feed molar ratio = 10. Initially, hexadecane conversion and selectivity to cracking products decreased rapidly with time-on-stream, and stabilized after 40 h on stream. This could be related to an initial loss of metal surface area, which decreased the activity of monofunctional hydrogenolysis generating cracking products. The acidic function seemed to be unaffected under these reaction conditions. The stable catalyst was exposed to a lower hydrogen-to-hexadecane ratio to accelerate deactivation by coking. A decline in the activity of both functions was observed. The activity of the acidic function could be almost completely recovered by oxidative regeneration, while the metal activity was only partially recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dry ME (2002) J Chem Technol Biotechnol 77:43

    Article  CAS  Google Scholar 

  2. Sie ST, Senden MMG, Van Wechem HMH (1991) Catal Today 8:371

    Article  CAS  Google Scholar 

  3. Dancuart LP, de Haan R, de Klerk A (2004) Stud Surf Sci Catal 152:482

    Google Scholar 

  4. Bouchy C, Hastoy G, Guillon E, Martens JA (2009) Oil Gas Sci Technol Rev IFP 64:91

    Article  CAS  Google Scholar 

  5. de Klerk A (2008) Catal Today 130:439

    Article  Google Scholar 

  6. Leckel D (2007) Ind Eng Chem Res 46:3505

    Article  CAS  Google Scholar 

  7. Rossetti I, Gambaro C, Calemma V (2009) Chem Eng J 154:295

    Article  CAS  Google Scholar 

  8. Calemma V, Peratello S, Pavoni S, Clerici G, Perego C (2001) Stud Surf Sci Catal 136:307

    Google Scholar 

  9. Pellegrini L, Locatelli S, Rasella S, Bonomi S, Calemma V (2004) Chem Eng Sci 59:4781

    Article  CAS  Google Scholar 

  10. Pellegrini LA, Gamba S, Calemma V, Bonomi S (2008) Chem Eng Sci 63:4285

    Article  CAS  Google Scholar 

  11. Calemma V, Correra S, Perego C, Pollesel P, Pellegrini L (2005) Catal Today 106:282

    Article  CAS  Google Scholar 

  12. Corma A, Martinez A, Pergher S, Peratello S, Perego C, Bellusi G (1997) Appl Catal A 152:107

    Article  CAS  Google Scholar 

  13. Weisz PB (1962) Adv Catal 13:137

    Article  CAS  Google Scholar 

  14. Weitkamp J (1975) Prepr Am Chem Soc Div Pet Chem 20:489

    Google Scholar 

  15. Martens JA, Jacobs PA, Weitkamp J (1986) Appl Catal 20:239

    Article  CAS  Google Scholar 

  16. Weitkamp J (2012) ChemCatChem 4:292

    Article  CAS  Google Scholar 

  17. Alvarez F, Ribeiro FR, Perot G, Thomazeau C, Guisnet M (1996) J Catal 162:179

    Article  CAS  Google Scholar 

  18. Degnan TF, Kennedy CR (1993) AIChE J 39:607

    Article  CAS  Google Scholar 

  19. Thybaut JW, Laxmi Narasimhan CS, Denayer JF, Baron GV, Jacobs PA, Martens JA, Marin GB (2004) Ind Eng Chem Res 44:5159

    Article  Google Scholar 

  20. Calemma V, Peratello S, Perego C (2000) Appl Catal A 190:207

    Article  CAS  Google Scholar 

  21. Bartholomew CH (2001) Appl Catal A 212:17

    Article  CAS  Google Scholar 

  22. Nam I, Seo J, Hwang S, Song I (2010) Res Chem Intermed 36:685

    Article  CAS  Google Scholar 

  23. Montes A, Perot G, Guisnet M (1980) React Kinet Catal Lett 13:77

    Article  CAS  Google Scholar 

  24. Beltramini J, Wessel T, Datta R (1991) AIChE J 37:845

    Article  CAS  Google Scholar 

  25. Daniell W, Schubert U, Glöckler R, Meyer A, Noweck K, Knözinger H (2000) Appl Catal A 196:247

    Article  CAS  Google Scholar 

  26. Bartholomew CH, Farrauto RJ (2006) Fundamentals of industrial catalytic processes. Wiley, New Jersey

    Google Scholar 

  27. Emeis CA (1993) J Catal 141:347

    Article  CAS  Google Scholar 

  28. Sie S (1996) AIChE J 42:3498

    Article  CAS  Google Scholar 

  29. Girgis MJ, Tsao YP (1996) Ind Eng Chem Res 35:386

    Article  CAS  Google Scholar 

  30. Regali F, Boutonnet M, Järås S (2012) Catal Today doi: 10.1016/j.cattod.2012.10.019

Download references

Acknowledgments

Thanks to Peter Hedström, Dept. Materials Science and Engineering, KTH for his help with the TEM analyses. The Swedish Energy Agency is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Regali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regali, F., París, R.S., Aho, A. et al. Deactivation of a Pt/Silica–Alumina Catalyst and Effect on Selectivity in the Hydrocracking of n-Hexadecane. Top Catal 56, 594–601 (2013). https://doi.org/10.1007/s11244-013-0011-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0011-8

Keywords

Navigation