Skip to main content

Advertisement

Log in

Nanobiocatalysts for Carbon Capture, Sequestration and Valorisation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Extensive efforts are being made to use biocatalysts for addressing an important millennium development goal i.e. global warming/climate change with recourse to CO2 capture valorisation and storage (CCVS). New advanced enzyme-based catalysts with significantly improved catalytic properties and stability have been discussed in detail with specific reference to carbonic anhydrase for biomimetic CO2 sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Karl TR, Trenberth KE (2003) Science 302:1719

    Article  CAS  Google Scholar 

  2. Watson RT (2001) Cambridge University Press, Cambridge, vol 398

  3. Atmospheric carbon dioxide (2011) NOAA Earth System Research Laboratory, Mauna Loa. http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo-groth

  4. King CJ (1980) AlChE J 431

  5. Yadav R, Wanjari S, Prabhu C, Kumar V, Labhsetwar N, Satyanarayanan T, Kotwal S, Rayalu S (2010) Energy Fuels 24:6198

    Article  CAS  Google Scholar 

  6. Abu-Khader MM (2006) Energy Sources Part A 28:1261

    Article  CAS  Google Scholar 

  7. Yoo CS, Cynn H, Gygi F, Galli G, Iota V, Nicol M, Carlson S, Hausermann D, Mailhiot C (1999) Phys Rev Lett 83:5527

    Article  CAS  Google Scholar 

  8. Bond GM, Medina MG, McPherson B, Stringer J, Abel A, Liu N (2002) Future energy systems and technology for CO2 abatement proceedings, vol 269

  9. Bond GM, Stringer J, Brandvold DK, Simsek FA, Medina MG, Egeland G (2001) Energy Fuels 15:309

    Article  CAS  Google Scholar 

  10. Favre N, Christ ML, Pierre AC (2009) J Mol Catal B 60:163

    Article  CAS  Google Scholar 

  11. Mirjafari P, Asghari K, Mahinpey N (2007) Ind Eng Chem Res 46:921

    Article  CAS  Google Scholar 

  12. Ramanan R, Kannan K, Vinayagamoorthy N, Ramkumar K, Sivanesan S, Chakrabarti T (2009) Biotechnol Bioprocess Eng 14:32

    Article  CAS  Google Scholar 

  13. Lee DH, Cho EY, Kim CJ, Kim SB (2010) Biotechnol Bioprocess Eng 15:1094

    Article  CAS  Google Scholar 

  14. Lee DH, Kim JM, Shin HY, Kang SW, Kim SW (2006) Biotechnol Bioprocess Eng 11:522

    Article  CAS  Google Scholar 

  15. Chong DS, Georgakaki IP, Mejia-Rodriguez R, Samabria-Chinchilla J, Soriaga MP, Darensbourg MY (2003) Dalton Trans 4158

  16. Burton SG, Cowan DA, Woodley JM (2002) Nat Biotechnol 20:37

    Article  CAS  Google Scholar 

  17. DeSantis G, Jones JB (1999) Curr Opin Biotechnol 10:324

    Article  CAS  Google Scholar 

  18. Duran N, Esposito E (2000) Appl Catal B 28:83

    Article  CAS  Google Scholar 

  19. Govardhan CP (1999) Curr Opin Biotechnol 10:331

    Article  CAS  Google Scholar 

  20. Guilbault GG (1984) IRL Press Ltd., Oxford

  21. Kim J, Grate JW (2003) Nano Lett 3:1219

    Article  CAS  Google Scholar 

  22. Kim J, Grate JW, Wang P (2006) Chem Eng Sci 61:1017

    Article  CAS  Google Scholar 

  23. Kim JB, Grate JW, Wang P (2008) Trends Biotechnol 26:639

    Article  CAS  Google Scholar 

  24. Koeller KM, Wong CH (2001) Nature 409:232

    Article  CAS  Google Scholar 

  25. Livage J, Coradin T, Roux C (2001) J Phys 13:R673

    CAS  Google Scholar 

  26. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Nature 409:258

    Article  CAS  Google Scholar 

  27. Tischer W, Wedekind F (1999) Biocatalysis 200:95

    CAS  Google Scholar 

  28. Mozhaev VV, Melik-Nubarov NS, Sergeeva MV, Siksnis V, Martinek K (1993) Trends Biotechnol 3:88

    Article  Google Scholar 

  29. Cabral MS, Kennedy JF (1993) Springer, Berlin, p 163

  30. Kennedy JF, Cabral JMS (1987) In: Kennedy JF (ed) Enzyme technology, vol 7(a). VCH Verlagsgesellschaft mbH, Weinheim, p 347

  31. Hudson SM (1998) S. Springer, New York, p 96

    Google Scholar 

  32. Khor E, Lim LY (2003) Biomaterials 24:2339

    Article  CAS  Google Scholar 

  33. Rinaudo M (2006) Prog Polym Sci 31:603

    Article  CAS  Google Scholar 

  34. Peter MG (1995) J Macromol Sci Pure Appl Chem A32:629

    Article  CAS  Google Scholar 

  35. Khor E (2002) Curr Opin Solid State Mater Sci 6:313

    Article  CAS  Google Scholar 

  36. Agboh OC, Qin Y (1997) Polym Adv Technol 8:355

    Article  CAS  Google Scholar 

  37. Dutta PK, Ravikumar MN, Dutta J (2002) J Macromol Sci Polym Rev C42:307

    Article  CAS  Google Scholar 

  38. Shahid F, Arachchi JKV, Jeon YJ (1999) Food Sci Technol 10:37

    Article  Google Scholar 

  39. Felt O, Buri P, Gurny R (1998) Drug Dev Ind Pharm 24:979

    Article  CAS  Google Scholar 

  40. Krajewska B (2004) Enzyme Microb Technol 35:126

    Article  CAS  Google Scholar 

  41. Macquarrie DJ, Hardy JJE (2005) Ind Eng Chem Res 44:8499

    Article  CAS  Google Scholar 

  42. Chang MY, Juang RS (2005) Enzyme Microb Technol 36:75

    Article  CAS  Google Scholar 

  43. Juang RS, Wu FC, Tseng RL (2001) Bioresour Technol 80:187

    Article  CAS  Google Scholar 

  44. Chang MY, Juang RS (2007) Biochem Eng J 35:93

    Article  CAS  Google Scholar 

  45. Adriano WS, Filho EHC, Silva JA, Giordano RLC, Goncalves LRB (2005) Braz J Chem Eng 22:529

    Article  CAS  Google Scholar 

  46. Chang M-Y, Juang R-S (2007) Int J Biol Macromol 40:224

    Article  CAS  Google Scholar 

  47. Dincer A, Telefoncu A (2007) J Mol Catal B Enzym 45:10

    Article  CAS  Google Scholar 

  48. Altun GD, Cetinus SA (2007) Food Chem 100:964

    Article  CAS  Google Scholar 

  49. Chiou SH, Hung TC, Giridhar R, Wu WT (2007) Prep Biochem Biotechnol 37:265

    Article  CAS  Google Scholar 

  50. Arnold FH, Wintrode PL, Miyazaki K, Gershenson A (2001) Trends Biochem Sci 26:100

    Article  CAS  Google Scholar 

  51. Brannigan JA, Wilkinson AJ (2002) Nat Rev Mol Cell Biol 3:964

    Article  CAS  Google Scholar 

  52. Lehmann M, Wyss M (2001) Curr Opin Biotechnol 12:371

    Article  CAS  Google Scholar 

  53. O’fagain C (2003) Enzyme Microb Technol 33:137

    Article  Google Scholar 

  54. Klibanov AM (2001) Nature 409:241

    Article  CAS  Google Scholar 

  55. Lee MY, Dordick JS (2002) Curr Opin Biotechnol 13:376

    Article  CAS  Google Scholar 

  56. Mozhaev VV, Melik-Nubarov NS, Sergeeva MV, Siksnis V, Martinek K (1990) Biocatalysis 3:179

    Article  CAS  Google Scholar 

  57. Caruso F, Schuler C (2000) Langmuir 16:9595

    Article  CAS  Google Scholar 

  58. Chen JP, Su DR (2001) Biotechnol Progr 17:369

    Article  CAS  Google Scholar 

  59. Jia HF, Zhu GY, Wang P (2003) Biotechnol Bioeng 84:406

    Article  CAS  Google Scholar 

  60. Liao MH, Chen DH (2001) Biotechnol Lett 23:1723

    Article  CAS  Google Scholar 

  61. Herricks TE, Kim SH, Kim J, Li D, Kwak JH, Grate JW, Kim SH, Xia YN (2005) J Mater Chem 15:3241

    Article  CAS  Google Scholar 

  62. Liu G, Lin Y, Ostatna V, Wang J (2005) Chem Commun (Camb) 3481

  63. Quiocho FA, Richards FM (1964) Proc Natl Acad Sci USA 52:833

    Article  CAS  Google Scholar 

  64. Stclair NL, Navia MA (1992) J Am Chem Soc 114:7314

    Article  CAS  Google Scholar 

  65. Cao LQ, van Rantwijk F, Sheldon RA (2000) Org Lett 2:1361

    Article  CAS  Google Scholar 

  66. Haring D, Schreier P (1999) Curr Opin Chem Biol 3:35

    Article  CAS  Google Scholar 

  67. Lopez-Serrano P, Cao L, van Rantwijk F, Sheldon RA (2002) Biotechnol Lett 24:1379

    Article  CAS  Google Scholar 

  68. Roy JJ, Abraham TE (2004) Chem Rev 104:3705

    Article  CAS  Google Scholar 

  69. Noritomi H, Sasanuma A, Kato S, Nagahama K (2007) Biochem Eng J 33:228

    Article  CAS  Google Scholar 

  70. Eckert M, Brethon A, Li YX, Sheldon RA, Arends IWCE (2007) Adv Synth Catal 349:2603

    Article  CAS  Google Scholar 

  71. Bakker M, van de Velde F, van Ranwijk F, Sheldon RA (2000) Biotechnol Bioeng 70:342

    Article  CAS  Google Scholar 

  72. Hegedus I, Nagy E (2009) Chem Eng Sci 64:1053

    Article  CAS  Google Scholar 

  73. Kim J, Jia HF, Lee CW, Chung SW, Kwak JH, Shin Y, Dohnalkova A, Kim BG, Wang P, Grate JW (2006) Enzyme Microb Technol 39:474

    Article  CAS  Google Scholar 

  74. Yan M, Ge J, Liu Z, Ouyang PK (2006) J Am Chem Soc 128:11008

    Article  CAS  Google Scholar 

  75. Ho KM, Mao XP, Gu LQ, Li P (2008) Langmuir 24:11036

    Article  CAS  Google Scholar 

  76. Darias R, Villalonga R (2001) J Chem Technol Biotechnol 76:489

    Article  CAS  Google Scholar 

  77. Yadav R, Labhsetwar N, Kotwal S, Rayalu S (2011) J Nanopart Res 13:263

    Article  CAS  Google Scholar 

  78. Yadav R, Satyanarayanan T, Kotwal S, Rayalu S (2011) Curr Sci 100:520

    CAS  Google Scholar 

  79. Akazawa T, Incharoensakdi A, Takabe T (1987) Nato-Asi 83

  80. Drennan CL, Doukov TI, Ragsdale SW (2004) J Biol Inorg Chem 9:511

    Article  CAS  Google Scholar 

  81. Jiang ZY, Xu SW, Wu H (2004) Carbon Dioxide Utilization for Global Sustainability. Sci Catal 153:475

    Article  CAS  Google Scholar 

  82. Moura JJG, Brondino CD, Trincao J, Romao MJ (2004) J Biol Inorg Chem 9:791

    Article  CAS  Google Scholar 

  83. Obert R, Dave BC (1999) J Am Chem Soc 121:12192

    Article  CAS  Google Scholar 

  84. Wolfe RS (1985) Trends Biochem Sci 10:396

    Article  CAS  Google Scholar 

  85. Aresta M, Dibenedetto A (2007) Dalton Trans 2975

  86. Wu H, Jiang ZY, Xu SW, Huang SF (2003) Chin Chem Lett 14:423

    CAS  Google Scholar 

  87. Sun QY, Jiang YJ, Jiang ZY, Zhang L, Sun XH, Li J (2009) Ind Eng Chem Res 48:4210

    Article  CAS  Google Scholar 

  88. Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) J Am Chem Soc 132:2132

    Article  CAS  Google Scholar 

  89. Supuran CT, Briganti F, Tilli S, Chegwidden WR, Scozzafava A (2001) Biorg.Med. Chem. 9:703

    Article  CAS  Google Scholar 

  90. Supuran CT, Scozzafava A, Casini A (2003) Med Res Rev 23:146

    Article  CAS  Google Scholar 

  91. Pocker Y, Stone JT (1967) Biochemistry 6:668

    Article  CAS  Google Scholar 

  92. Sly WS, Hu PY (1995) Annu Rev Biochem 64:375

    Article  CAS  Google Scholar 

  93. Pocker Y, Meany JE (1965) J Am Chem Soc 87:1809

    Article  CAS  Google Scholar 

  94. Tashian RE, Douglas DP, Yu YL (1964) Biochem Biophys Res Commun 14:256

    Article  CAS  Google Scholar 

  95. Lindskog S (1997) Pharmacol Ther 74:1

    Article  CAS  Google Scholar 

  96. Druckenmiller ML, Maroto-Valer MM (2005) Fuel Process Technol 86:1599

    Article  CAS  Google Scholar 

  97. Liu N, Bond GM, Abel A, McPherson BJ, Stringer J (2005) Fuel Process Technol 86:1615

    Article  CAS  Google Scholar 

  98. Trachtenberg MC (2007) US Patent Appl. Publ. No. 2007/0004023

  99. Trachtenberg MC (2007) Canadian Patent 2(222):030

    Google Scholar 

  100. Ramanan R, Kannan K, Sivanesan SD, Mudliar S, Kaur S, Tripathi AK, Chakrabarti T (2009) World J Microbiol Biotechnol 25:981

    Article  CAS  Google Scholar 

  101. Sharma A, Bhattacharya A (2010) J Mol Catal B Enzym 67:122

    Article  CAS  Google Scholar 

  102. Prabhu C, Wanjari S, Puri A, Bhattacharya A, Pujari R, Yadav R, Das S, Labhsetwar N, Sharma A, Satyanarayanan T, Rayalu S (2011) Energy Fuels 25:1327

    Article  CAS  Google Scholar 

  103. Borchert M, Saunders P (2008) WO095057 (2008)

  104. Martin B, Paria S (2008) W.O. Patent No. WO08/095057

  105. Lalande JM, Tremblay A (2005) U.S. Patent No. 6,908,507 B2

  106. Prabhu C, Valechha A, Wanjari S, Labhsetwar N, Kotwal S, Satyanarayanan T, Rayalu S (2011) J Mol Catal B Enzym 71:71

    Article  CAS  Google Scholar 

  107. Wanjari S, Prabhu C, Satyanarayana T, Vinu A, Rayalu S (2012) Microporous Mesoporous Mater 160:151

    Article  CAS  Google Scholar 

  108. Wanjari S, Prabhu C, Yadav R, Satyanarayana T, Labhsetwar N, Rayalu S (2011) Process Biochem 46:1010

    Article  CAS  Google Scholar 

  109. Yadav R, Joshi M, Wanjari S, Prabhu C, Kotwal S, Satyanarayana T, Rayalu S (2012) Water Air Soil Poll 223:5345

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Supra Institutional Project [SIP-16 (4.2)], Council of Scientific and Industrial Research (CSIR), New Delhi, India, and the Department of Biotechnology (DBT), New Delhi, India, sponsored project. The authors are thankful to Director, NEERI, Nagpur, India for providing research facilities. The authors also thank Dr. Tapan Chakraborty, Scientist H, EHD Division, NEERI, Nagpur, India for giving valuable suggestion on the topic. Three of the authors Renu Yadav, Snehal Wanjari and Chandan Prabhu would also take the opportunity to sincerely acknowledge the Council of Scientific and Industrial Research (CSIR), India for granting the Senior Research Fellowship. This study was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (Ministry of Knowledge Economy) (No. 20118510020020) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012K001385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Rayalu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayalu, S., Yadav, R., Wanjari, S. et al. Nanobiocatalysts for Carbon Capture, Sequestration and Valorisation. Top Catal 55, 1217–1230 (2012). https://doi.org/10.1007/s11244-012-9896-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9896-x

Keywords

Navigation