Topics in Catalysis

, Volume 55, Issue 11–13, pp 710–717 | Cite as

Effect of Surface and Oxygen Coverage on Ethylene Epoxidation

  • M. O. Ozbek
  • I. Onal
  • R. A. van Santen
Original Paper


Ethylene epoxidation was studied as a function of oxygen coverage; for three different surfaces (111), (100) and (110) of three different IB metals using periodical DFT calculations. Oxygen coverage dependence was tested for 11, 25 and 33 % surface oxygen on Ag(111) surface. Calculations showed that increasing oxygen amount increased the exothermicity of the reaction while lowering the activation barriers. At studied oxygen ratios ethylene oxide and acetaldehyde formations proceed through OMC intermediate. In agreement with earlier studies, predicted selectivity is independent of surface structure. Generally the activation barriers for aldehyde formation are lower than those for epoxide formation on the studied surfaces. On copper surfaces the high stability of the precursor intermediates caused high activation barriers for the product formations. Also, epoxide formation is endothermic with respect to pre-oxygenated copper surfaces. On the other hand gold surfaces showed the smallest activation barriers for the product formations. Ag surfaces did not show conclusive differences for the activation barriers for epoxide versus aldehyde formation, which is in agreement with the ~50 % EO selectivity of the un-promoted metallic silver.


Alkene Epoxidation Ethylene Oxide Silver Gold Copper 



This work was supported by NWO-NCF and SARA for the computation time on Huygens computer system with the project number SH-074-09 and was supported in part by TÜBİTAK through TR-Grid e-Infrastructure Project.


  1. 1.
  2. 2.
    Lefort ET (1935), Process for the production of ethylene oxide. Catalyse, Generalisee FR. DE. SAGoogle Scholar
  3. 3.
    Voge HH, Adams CR (1967) Catalytic oxidation of olefins. Academic Press, New YorkGoogle Scholar
  4. 4.
    Bulushev DA et al (1995) Appl Catal A General 123(2):301CrossRefGoogle Scholar
  5. 5.
    Goncharova SN, Paukshtis EA, Bal’zhinimaev BS (1995) Appl Catal A General 126(1):67CrossRefGoogle Scholar
  6. 6.
    Kestenbaum H et al (2002) Ind Eng Chem Res 41(4):710CrossRefGoogle Scholar
  7. 7.
    Campbell CT (1984) J Vac Sci Technol A Vac Surfaces Films 2(2):1024CrossRefGoogle Scholar
  8. 8.
    Force EL, Bell AT (1975) J Catal 38(1–3):440CrossRefGoogle Scholar
  9. 9.
    Force EL, Bell AT (1976) J Catal 44(2):175CrossRefGoogle Scholar
  10. 10.
    Force EL, Bell AT (1975) J Catal 40(3):356CrossRefGoogle Scholar
  11. 11.
    Kilty PA, Sachtler WMH (1974) Cat Rev Sci Eng 10(1):1CrossRefGoogle Scholar
  12. 12.
    Grant RB and Lambert RM (1983) J Chem Soc, Chem Commun (12):662Google Scholar
  13. 13.
    Grant RB, Lambert RM (1984) Surf Sci 146(1):256CrossRefGoogle Scholar
  14. 14.
    Grant RB, Lambert RM (1985) J Catal 92(2):364CrossRefGoogle Scholar
  15. 15.
    Campbell CT (1986) J Catal 99(1):28CrossRefGoogle Scholar
  16. 16.
    Campbell CT (1985) J Catal 94(2):436CrossRefGoogle Scholar
  17. 17.
    Campbell CT, Daube KA (1987) J Catal 106(1):301CrossRefGoogle Scholar
  18. 18.
    Campbell CT, Koel BE (1985) J Catal 92(2):272CrossRefGoogle Scholar
  19. 19.
    Van Santen RA, De Groot CPM (1986) J Catal 98(2):530CrossRefGoogle Scholar
  20. 20.
    Jones GS et al (1998) J Am Chem Soc 120(13):3196CrossRefGoogle Scholar
  21. 21.
    Linic S, Medlin JW, Barteau MA (2002) Langmuir 18(13):5197CrossRefGoogle Scholar
  22. 22.
    Linic S, Barteau MA (2003) J Catal 214(2):200CrossRefGoogle Scholar
  23. 23.
    Linic S, Barteau MA (2008) Heterogeneous catalysis of alkene epoxidation. Wiley, WeinheimGoogle Scholar
  24. 24.
    Medlin JW, Barteau MA (2001) J Phys Chem B 105(41):10054CrossRefGoogle Scholar
  25. 25.
    Linic S, Barteau MA (2003) J Am Chem Soc 125(14):4034CrossRefGoogle Scholar
  26. 26.
    Torres D et al (2005) J Am Chem Soc 127(31):10774CrossRefGoogle Scholar
  27. 27.
    Torres D, Lopez N, Illas F (2006) J Catal 243(2):404CrossRefGoogle Scholar
  28. 28.
    Christopher P, Linic S (2008) J Am Chem Soc 130(34):11264CrossRefGoogle Scholar
  29. 29.
    Lukaski A, Barteau M (2009) Catal Lett 128(1):9CrossRefGoogle Scholar
  30. 30.
    Christopher P, Linic S (2010) ChemCatChem 2(1):78CrossRefGoogle Scholar
  31. 31.
    Van Santen RA, Kuipers HPCE (1987) The mechanism of ethylene epoxidation. Academic Press, New YorkGoogle Scholar
  32. 32.
    Nagy AJ et al (1999) J Catal 182(2):417CrossRefGoogle Scholar
  33. 33.
    Savinova ER et al (2000) Electrochim Acta 46(2–3):175CrossRefGoogle Scholar
  34. 34.
    Su DS et al (2008) Angew Chem 120(27):5083CrossRefGoogle Scholar
  35. 35.
    Li W-X, Stampfl C, Scheffler M (2003) Phys Rev B 67(4):045408CrossRefGoogle Scholar
  36. 36.
    Li W-X, Stampfl C, Scheffler M (2002) Phys Rev B 65(7):075407CrossRefGoogle Scholar
  37. 37.
    Michaelides A, Reuter K, Scheffler M (2005) J Vac Sci Technol A Vac Surfaces Films 23(6):1487CrossRefGoogle Scholar
  38. 38.
    Schnadt J et al (2009) Phys Rev B 80(7):075424CrossRefGoogle Scholar
  39. 39.
    Schnadt J et al (2006) Phys Rev Lett 96(14):146101CrossRefGoogle Scholar
  40. 40.
    Bocquet M-L et al (2003) J Am Chem Soc 125(10):3119CrossRefGoogle Scholar
  41. 41.
    Michaelides A et al (2003) Chem Phys Lett 367(3–4):344CrossRefGoogle Scholar
  42. 42.
    Bocquet M-L, Loffreda D (2005) J Am Chem Soc 127(49):17207CrossRefGoogle Scholar
  43. 43.
    Bocquet M-L et al (2003) J Am Chem Soc 125(19):5620CrossRefGoogle Scholar
  44. 44.
    Michaelides M-LBaA (2006) Exploring the catalytic activity of a noble metal: the Ag catalyzed ethylene epoxidation reaction. Imperial College Press, LondonGoogle Scholar
  45. 45.
    Gao W, Zhao M, Jiang Q (2007) J Phys Chem C 111(10):4042CrossRefGoogle Scholar
  46. 46.
    Fellah M, Van Santen R, Onal I (2011) Catal Lett 141(6):762CrossRefGoogle Scholar
  47. 47.
    Ozbek MO, Onal I, Santen RaV (2011) J Phys Condens Matter 23(40):404202CrossRefGoogle Scholar
  48. 48.
    Ozbek MO, Onal I, Van Santen RA (2011) J Catal 284(2):230CrossRefGoogle Scholar
  49. 49.
    Özbek MO, Önal I, Van Santen RA (2011) ChemCatChem 3(1):150CrossRefGoogle Scholar
  50. 50.
    Wang C-B, Deo G, Wachs IE (1999) J Phys Chem B 103(27):5645CrossRefGoogle Scholar
  51. 51.
    Carter EA, Goddard III WA (1989) Surf Sci 209(1–2):243CrossRefGoogle Scholar
  52. 52.
    Carter EA, Goddard WA (1988) J Catal 112(1):80CrossRefGoogle Scholar
  53. 53.
    Grant RB et al (1987) J Chem Soc Faraday Transact1 Phys Chem Condens Phases 83(7):2035Google Scholar
  54. 54.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6(1):15CrossRefGoogle Scholar
  55. 55.
    Kresse G, Hafner J (1994) Phys Rev B 49(20):14251CrossRefGoogle Scholar
  56. 56.
    Perdew JP et al (1993) Phys Rev B 48(7):4978CrossRefGoogle Scholar
  57. 57.
    Bl, Ouml, Chl PE (1994) Phys Rev B 50(24):17953CrossRefGoogle Scholar
  58. 58.
    Henkelman G, Jonsson H (2000) J Chem Phys 113(22):9978CrossRefGoogle Scholar
  59. 59.
    Handbook of Chemistry & Physics Online (2011) 91: Accessed July 2012
  60. 60.
    Deng X et al (2005) J Am Chem Soc 127(25):9267CrossRefGoogle Scholar
  61. 61.
    Yang L et al (1989) Phys Rev B 40(18):12271CrossRefGoogle Scholar
  62. 62.
    Campbell CT (1985) Surf Sci 157(1):43CrossRefGoogle Scholar
  63. 63.
    Simonetti S, Brizuela G, Juan A (2010) Appl Surf Sci 256(21):6459CrossRefGoogle Scholar
  64. 64.
    Torres D, Illas F (2006) J Phys Chem B 110(27):13310CrossRefGoogle Scholar
  65. 65.
    Tang W et al (2009) J Phys Condens Matter 21(8):084204CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentMiddle East Technical UniversityAnkaraTurkey
  2. 2.Chemical Engineering and Chemistry DepartmentEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations