Skip to main content
Log in

Conversion of Synthesis Gas to Dimethylether Over Gold-based Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

It is shown that Au–zinc oxide–alumina catalysts are suitable for the water–gas shift reaction and for methanol (MeOH) and DME synthesis, indicating their use in a direct single-stage process for converting syngas to a DME + methanol mixture. Temperatures above 340 °C were required in order to obtain reasonable catalytic activity. A 67 % DME selectivity was achieved at 380 °C with a low space velocity 0.75 dm3 h−1 g−1 and 50 bar. The lower CO conversions at the higher temperature of 460 °C was probably due to the MeOH equilibrium limitation in the range of temperatures 340 to 460 °C, but deactivation is observed as well, above 460 °C. Au/ZnO/γ-Al2O3 is more stable than traditional copper-based catalysts, which are stable below about 300 °C, and then only in the absence of water. The gold composite catalyst was mainly selective toward DME, MeOH and CH4, and to C2 to C5 hydrocarbons. An analysis of the main reactions involved indicates that only the methanol synthesis reaction reaches a near-equilibrium situation, with the other reactions being under kinetic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Keshav TR, Basu S (2007) Fuel Proc Technol 88:493

    Article  CAS  Google Scholar 

  2. Marchionna M, Patrini R, Sanfilippo D, Migliavacca G (2008) Fuel Proc Technol 89:1255

    Article  CAS  Google Scholar 

  3. Olah G, Goeppert A, Prakash Surya (2009) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim

    Book  Google Scholar 

  4. Fleisch TH, Sills RA, Briscoe MD (2002) J Nat Gas Chem 11:1

    CAS  Google Scholar 

  5. Varisli D, Dogu T (2008) J Sci 21:37

    Google Scholar 

  6. Semelesberger TA, Borup RL, Greene HL (2006) J Power Sources 156:497

    Article  Google Scholar 

  7. Lu W-Z, Teng L-H, Xioa WD (2004) Chem Eng Sci 59:5455

    Article  CAS  Google Scholar 

  8. Tanaka Y, Kikuchi R, Takeguchi T, Eguchi K (2007) Appl Catal B 57:211

    Google Scholar 

  9. Moradi GR, Nostrati S, Yaripour F (2007) Catal Commun 8:598

    Article  CAS  Google Scholar 

  10. Seo Y, Jo JH, Ryu H-J, Yi C-K, Jin GT (2008) J Chem Eng Jpn 41:585

    Article  CAS  Google Scholar 

  11. Cocco D, Pettinau A, Cau GJ (2006) J Power Energy 220:95

    Article  CAS  Google Scholar 

  12. Aguayo AT, Erena J, Siera I, Olazar M, Bilbao J (2005) Catal Today 106:265

    Article  CAS  Google Scholar 

  13. Moradi GR, Ghanei R, Yaripour F (2007) Int J Chem Reactor Eng 5:A14

    Article  Google Scholar 

  14. Zhang Q, Li Q, Asami K, Asaoka S, Fujimoto K (2004) Fuel Proc Technol 85:1139

    Article  CAS  Google Scholar 

  15. Pyatnitskii YI, Strizhak PE, Lunev NK (2009) Theor Exper Chem 45:312

    Google Scholar 

  16. Sakurai H, Haruta M (1995) Appl Catal A 127:93

    Article  CAS  Google Scholar 

  17. Mpela A, Hildebrandt D, Glasser D, Scurrell MS (2007) Gold Bull 40:219

    Article  CAS  Google Scholar 

  18. Wang L, Fang D, Huang X, Zhang S, Qi Y, Liu Z (2006) J Nat Gas Chem 15:38

    Article  Google Scholar 

  19. Moradi G, Ahmadpour J, Nazari M, Yaripour F (2008) Ind Eng Chem Res 47:7672

    Article  CAS  Google Scholar 

  20. Ramos FS, de Farias AMD, Borges LEP, Monteiro JL, Fraga MA, Sousa Aguiar EF (2005) Catal Today 101:39

    Article  CAS  Google Scholar 

  21. Zhao Y, Mpela A, Enache DI, Taylor SH, Hildebrandt D, Glasser D, Hutchings GJ, Atkins MP, Scurrell MS (2007) Stud Surf Sci Catal 163:141

    Article  CAS  Google Scholar 

  22. Kozlov AI, Kozlova AP, Liu H, Iwasawa Y (1999) Appl Catal A 182:9

    Article  CAS  Google Scholar 

  23. Svelle S, Ronning PO, Olsbye U, Kolboe S (2005) J Catal 234:385

    Article  CAS  Google Scholar 

  24. Zhu Y, Wang S, Ge X, Liu Q, Luo Z, Cen K (2010) Fuel Proc Technol 91:424

    Article  CAS  Google Scholar 

  25. Dutta P, Roy SC, Nandi LN, Samuel P, Pillai SM, Bhat BD, Ravindranathan M (2004) J Mol Catal A 223:231

    Article  CAS  Google Scholar 

  26. Wu X, Abraha MG, Anthony RG (2004) Appl Catal A 260:63

    Article  CAS  Google Scholar 

  27. Campbell CT, Daube KA, White JM (1987) Surf Sci 182:458

    Article  CAS  Google Scholar 

  28. Leon y Leon CA, Vannice MA (1991) Appl Catal 69:291

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike S. Scurrell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mbuyi, K.G., Scurrell, M.S., Hildebrandt, D. et al. Conversion of Synthesis Gas to Dimethylether Over Gold-based Catalysts. Top Catal 55, 771–781 (2012). https://doi.org/10.1007/s11244-012-9865-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9865-4

Keywords

Navigation